Advertisement

Aspergillus nidulans

  • A. John Clutterbuck

Abstract

Aspergillus nidulans is a sexually reproducing member of the Aspergillaceae (Raper and Fennell, 1965). The history of genetic investigations of this mold dates from 1945, when Pontecorvo started to look for an organism suitable for a genetic approach to “certain problems of the spacial organisation of the cell” (Pontecorvo et al., 1953). These problems amounted to an attempt to define the gene and its relation to cell me-tabolism. The reasons for the choice of A. nidulans as well as the story of the early development of genetical studies are fully given in Pontecorvo et al. (1953). Briefly, the advantages of this fungus include the fact that it is a haploid eukaryote which rapidly forms colonies on simple media and can therefore be treated as a microorganism. The asexual spores (conidia) are uninucleate and of a striking green color which is modified in a variety of spore-color mutants (see Table 1) to give conspicuous markers which are invaluable in genetic manipulations. The fungus is homothallic, so any strain can be crossed to any other, and, furthermore, stocks such as those built up in Glasgow can be assumed to be relatively isogenic since they are derived from a single wild isolate.

Keywords

Linkage Group Nitrate Reductase Aspergillus Nidulans Nitrogen Mustard Xanthine Dehydrogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Acha, I. G. and J. R. Villanueva, 1961 A selective medium for the formation of ascospores by Aspergillus nidulans. Nature (Lond.) 189:328.Google Scholar
  2. Agnihotri, V. P., 1961 Utilization of sugars in mixtures by some ascosporic members of the Aspergillus nidulans group. Flora Allg. Bot. Zeit. 151:159–161.Google Scholar
  3. Agnihotri, V. P., 1962a Studies on Aspergilli. VII. Utilization of oligo-and polysaccharides by some ascosporic members of the Aspergillus nidulans group. Lloydia 25:94–99.Google Scholar
  4. Agnihotri, V. P., 1962b Studies on Aspergilli. V. Utilization of monosaccharides by some ascosporic members of the Aspergillus nidulans group. Flora Allg. Bot. Zeit. 152:81–90.Google Scholar
  5. Agnihotri, V. P., 1963a Studies on Aspergilli. XIII. Carbon requirements of some ascosporic members of the Aspergillus nidulans group. Acta Biol. Acad. Sci. Hung. 14:45–50.Google Scholar
  6. Agnihotri, V. P., 1963b Studies on Aspergilli. VIII. Sulphur requirements of some ascosporic members of the Aspergillus nidulans group. Pathol. Microbiol. 26:810–816.Google Scholar
  7. Agnihotri, V. P., 1964 Studies on Aspergilli. XVI. Effect of pH, temperature and carbon and nitrogen interaction. Mycopath. Myc. Appl. 24:305–314.Google Scholar
  8. Agnihotri, V. P., 1967 Role of trace elements in the growth and morphology of five ascosporic Aspergillus species. Can. J. Bot. 45:73–79.Google Scholar
  9. Agnihotri, V. P. and B. S. Mehrotra, 1961 The amino acid composition of some ascosporic members of the Aspergillus nidulans group. Lloydia 24:41–44.Google Scholar
  10. Alderson, T., 1969 Spontaneous and induced reversion of ICR-170-induced xanthine dehydrogenase mutants of Aspergillus nidulans. Mutat. Res. 8:521–529.PubMedGoogle Scholar
  11. Alderson, T. and A. M. Clark, 1966 Interlocus specificity for chemical mutagens in Aspergillus nidulans. Nature (Lond.) 210:593–595.Google Scholar
  12. Alderson, T. and M. J. Hartley, 1969 Specificity for spontaneous and induced forward mutation at several gene loci in Aspergillus nidulans. Mutat. Res. 8:255–264.PubMedGoogle Scholar
  13. Alderson, T. and C. Scazzocchio, 1967 A system for the study of interlocus specificity for both forward and reverse mutation at least eight gene loci in Aspergillus nidulans. Mutat. Res. 4:567–577.PubMedGoogle Scholar
  14. Alderson, T. and B. R. Scott, 1970 The photosensitizing effect of 8-methoxypsoralen on the inactivation and mutation of Aspergillus conidia by near ultraviolet light. Mutat. Res. 9:569–578.PubMedGoogle Scholar
  15. Alderson, T. and B. R. Scott, 1971 Induction of mutation by gamma-irradiation in the presence of oxygen or nitrogen. Nat. New Biol. 230:45–48.PubMedGoogle Scholar
  16. Apirion, D., 1962 A general system for the automatic selection of auxotrophs from prototrophs and vice versa in micro-organisms. Nature (Lond.) 195:959–961.Google Scholar
  17. Apirion, D., 1963 Formal and physiological genetics of ascospore colour in Aspergillus nidulans. Genet. Res. 4:276–283.Google Scholar
  18. Apirion, D., 1965 The two-way selection of mutants and revenants in respect of acetate utilization and resistance to fluoroacetate in Aspergillus nidulans. Genet. Res. 6:317–329.PubMedGoogle Scholar
  19. Apirion, D., 1966 Recessive mutants at unlinked loci which complement in diploids but not in heterokaryons of Aspergillus nidulans. Genetics 53:935–941.PubMedGoogle Scholar
  20. Apirion, D., G. L. Dorn and E. Forbes, 1963 The VIII linkage group. Aspergillus Newsl. 4:15–16.Google Scholar
  21. Apte, B. N. and O. Siddiqi. 1971 Purification and properties of arylsulphatase of Aspergillus nidulans. Biochim. Biophys. Acta 242:129–140.PubMedGoogle Scholar
  22. Argoudelis, A. D., J. H. Coats and R. R. Herr, 1966 Isolation and characterization of a new antibiotic. Antimicrob. Agents Chemotherap. 1965 pp. 801-803.Google Scholar
  23. Arlett, C. F., 1957 Induction of cytoplasmic mutants in Aspergillus nidulans. Nature (Lond.) 179:1250–1251.Google Scholar
  24. Arlett, C. F., 1960 A system of cytoplasmic variation in Aspergillus nidulans. Heredity 15:377–388.Google Scholar
  25. Arlett, C. F., 1966a The radiation sensitivity of a cytoplasmic mutant of Aspergillus nidulans. Int. J. Radiat. Biol. 10:539–550.Google Scholar
  26. Arlett, C. F., 1966b The influence of the cytoplasm on mutation in Aspergillus nidulans. Mutat. Res. 3:410–419.PubMedGoogle Scholar
  27. Arlett, C.F., 1966c The interaction between ultraviolet and gamma irradiation in Aspergillus nidulans. Int. J. Radiat. Biol. 11:313–320.Google Scholar
  28. Arlett, C. F., M. Grindle and J. L. Jinks, 1962 The “red” cytoplasmic variant of Aspergillus nidulans. Heredity 17:197–209.PubMedGoogle Scholar
  29. Armitt, S., C. F. Roberts and H. L. Kornberg, 1970 The role of isocitrate lyase in Aspergillus nidulans. FEBS (Fed. Eur. Biochem. Soc.) Lett. 7:231–233.Google Scholar
  30. Armitt, S., C. F. Roberts and H. L. Kornberg, 1971 Mutants of Aspergillus nidulans lacking malate synthase. FEBS (Fed. Eur. Biochem. Soc.) Lett. 12:276–278.Google Scholar
  31. Arst, H. N., 1968 Genetic analysis of the first steps of sulphate metabolism of Aspergillus nidulans. Nature (Lond.) 219:268–270.Google Scholar
  32. Arst, H. N., 1971 Mutants of Aspergillus nidulans unable to use choline-O-sulphate. Genet. Res. 17:273–277.Google Scholar
  33. Arst, H. N. and D. J. Cove, 1969 Methylammonium resistance in Aspergillus. J. Bactenol. 98:1284–1293.Google Scholar
  34. Arst, H. N. and D. J. Cove 1970 Molybdate metabolism in Aspergillus nidulans. II. Mutations affecting phosphatase activity and galactose utilization. Mol. Gen. Genet. 108:146–153.PubMedGoogle Scholar
  35. Arst, H. N. and D. J. Cove, 1973 Nitrogen metabolite repression in Aspergillus nidulans. Mol. Gen. Genet. 126:111–141.PubMedGoogle Scholar
  36. Arst, H. N. and D. W. MacDonald, 1973 A mutant of Aspergillus nidulans lacking NADP-linked glutamate dehydrogenase. Mol. Gen. Genet. 122:261–265.PubMedGoogle Scholar
  37. Arst, H. N. and B. M. Page, 1973 Mutants of Aspergillus nidulans altered in the transport of methylammonium and ammonium. Mol. Gen. Genet. 121:239–245.Google Scholar
  38. Arst, H. N. and C. Scazzocchio, 1971 RNA synthesis in Aspergillus nidulans. Heredity 26:346.Google Scholar
  39. Arst, H. N. and C. Scazzocchio, 1972 Control of nucleic acid synthesis in Aspergillus nidulans. Heredity 29:131.Google Scholar
  40. Arst, H. N., D. W. MacDonald and D. J. Cove, 1970 Molybdate metabolism in Aspergillus nidulans. I. Mutations affecting nitrate reductase and/or xanthine dehydrogenase. Mol. Qen. Genet. 108:129–145.Google Scholar
  41. Ashwood-Smith, M. J. and B. Home, 1972 Response of Aspergillus and Penicillium spores to ultraviolet radiation at low temperatures. Photochem. Photobiol. 15:89–92.PubMedGoogle Scholar
  42. Aspen, A. J. and A. Meister, 1962 Conversion of α-aminoadipic acid to L-pipecolic acid by Aspergillus nidulans. Biochemistry 1:606–612.PubMedGoogle Scholar
  43. Axelrod, D. E., 1972 Kinetics of differentiation of conidiophores and conidia by colonies of Aspergillus nidulans. J. Gen. Microbiol 73:181–184.PubMedGoogle Scholar
  44. Axelrod, D. E., M. Gealt and M. Pastushok, 1973 Gene control of developmental competence in Aspergillus nidulans. Develop. Biol. 34:9–15.PubMedGoogle Scholar
  45. Ayling, P. D., 1969 Methionine suppressors in Aspergillus nidulans: their genetics and behaviour in heterokaryons and diploids. Genet. Res. 14:275–289.PubMedGoogle Scholar
  46. Azevedo, J. L., 1965 The centromere of chromosome VII of Aspergillus nidulans. Aspergillus Newsl. 6:7.Google Scholar
  47. Azevedo, J. L., 1970 Recessive lethals induced by nitrous acid in Aspergillus nidulans. Mutat. Res. 10:111–117.Google Scholar
  48. Azevedo, J. L. and J. A. Roper, 1967 Lethal mutations and balanced lethal systems in Aspergillus nidulans. J. Gen. Microbiol. 49:149–155.PubMedGoogle Scholar
  49. Azevedo, J. L. and J. A. Roper, 1970 Mitotic nonconformity in Aspergillus nidulans: successive and transposable genetic changes. Genet. Res. 16:79–93.PubMedGoogle Scholar
  50. Bainbridge, B. W., 1966 Table of located or partially located mutants and revised map of linkage group III. Aspergillus Newsl. 7:19–21.Google Scholar
  51. Bainbridge, B. W., 1970 Genetic analysis of an unequal chromosomal translocation in Aspergillus nidulans. Genet. Res. 15:317–326.Google Scholar
  52. Bainbridge, B. W., 1971 Macromolecular composition and nuclear division during spore germination in Aspergillus nidulans. J. Gen. Microbiol. 66:319–325.PubMedGoogle Scholar
  53. Bainbridge, B. W. and J. A. Roper, 1966 Observations on the effects of a chromosome duplication in Aspergillus nidulans. J. Gen. Microbiol. 42:417–424.PubMedGoogle Scholar
  54. Bainbridge, B. W. and A. P. J. Trinci, 1969 Colony and specific growth rates of normal and mutant strains of Aspergillus nidulans. Trans. Br. Mycol. Soc. 53:473–475.Google Scholar
  55. Bainbridge, B. W., H. Dalton and J. H. Walpole, 1966 Identification of the arginosuccinase gene. Aspergillus Newsl. 7:18.Google Scholar
  56. Bainbridge, B. W., A. T. Bull, S. J. Pirt, B. I. Rowley and A. P. J. Trinci, 1971 Biochemical and structural changes in non-growing maintained and autolysing cultures of Aspergillus nidulans. Trans. Br. Mycol. Soc. 56:371–385.Google Scholar
  57. Ball, C., 1967 Chromosome instability related to gene suppression in Aspergillus nidulans. Genet. Res. 10:173–183.PubMedGoogle Scholar
  58. Ball, C. and J. L. Azevedo, 1964 A “fluffy” mutant in Aspergillus nidulans. Aspergillus Newsl. 5:9.Google Scholar
  59. Ball, C. and J. A. Roper, 1966 Studies on the inhibition and mutation of Aspergillus nidulans by acridines. Genet. Res. 7:207–221.PubMedGoogle Scholar
  60. Bandiera, M., G. Morpurgo and L. Volterra, 1970 “Barriers” to intragenic mitotic crossing-over, Mutat. Res. 9:213–217.PubMedGoogle Scholar
  61. Bandiera, M., D. Armaleo and G. Morpurgo, 1973 Mitotic intragenic recombination as a consequence of heteroduplex formation in Aspergillus nidulans. Mol. Gen. Genet. 122:137–148.PubMedGoogle Scholar
  62. Baracho, I. R. and J. L. Azevedo, 1972 A quantitative analysis of cleistothecia production in Aspergillus nidulans. Experientia (Basel) 28:855–856.Google Scholar
  63. Baracho, I. R., R. Vancovsky and J. L. Azevedo, 1970 Correlations between size and hybrid or selfed state of cleistothecia in Aspergillus nidulans. Trans. Br. Mycol. Soc. 54:109–116.Google Scholar
  64. Barbata, G., L. Valdes and G. Sermonti, 1973 Complementation among developmental mutants in Aspergillus nidulans. Mol. Gen. Genet. 126:227–232.PubMedGoogle Scholar
  65. Barratt, R. W., G. B. Johnson and W. N. Ogata, 1965 Wild type and mutant stocks of Aspergillus nidulans. Genetics 52:233–246.PubMedGoogle Scholar
  66. Barron, G. L. and B. H. MacNeill, 1962 A simplified procedure for demonstrating the parasexual cycle in Aspergillus. Can. J. Bot. 40:1321–1327.Google Scholar
  67. Bartnik, E., P. Weglenski and M. Piotrowska, 1973a Ammonium and glucose repression of the arginine catabolic enzymes in Aspergillus nidulans. Mol. Gen. Genet. 126:75–84.PubMedGoogle Scholar
  68. Bartnik, E., J. Guzewska and P. Weglenski, 1973b Mutations simultaneously affecting ammonium and glucose repression of the arginine catabolic enzymes in Aspergillus nidulans. Mol. Gen. Genet. 126:85–92.PubMedGoogle Scholar
  69. Beccari, E., P. Modigliani and G. Morpurgo, 1967 Induction of inter-and intragenic mitotic recombination by 5-fluorodeoxyuridine and 5-fluorouracil in Aspergillus nidulans. Genetics 56:7–12.PubMedGoogle Scholar
  70. Benko, P. V., T. C. Wood and I. H. Segal, 1967 Specificity and regulation of methionine transport in filamentous fungi. Arch. Biochem. Biophys. 122:783–804.Google Scholar
  71. Berlyn, M., 1967 Gene-enzyme relationships in histidine biosynthesis in Aspergillus nidulans. Genetics 57:561–570.PubMedGoogle Scholar
  72. Border, D. J. and A. P. J. Trinci, 1970 Fine structure of the germination of Aspergillus nidulans conidia. Trans. Br. Mycol. Soc. 54:143–152.Google Scholar
  73. Bradfield, G., D. Somerfield, T. Meyn, M. Holby, D. Babcock, D. Bradley, and I. H. Segal, 1970 Regulation of sulphate transport in filamentous fungi. Plant Physiol. 46:720–727.PubMedGoogle Scholar
  74. Brotskaia, S. Z., 1958 The morphology of variants of Aspergillus nidulans produced by ultraviolet irradiation. Mikrobiologiia (Eng. transi.) 27:45–51.Google Scholar
  75. Brotskaia, S. Z., 1960 Effect of ultraviolet irradiation in varying dosage on production of Aspergillus nidulans variants with active proteases. Mikrobiologiia (Eng. transi.) 29:264–266.Google Scholar
  76. Brown, C. E. and A. H. Romano, 1969 Evidence against necessary phosphorylation during hexose transport in Aspergillus nidulans. J. Bacteriol 100:1198–1203.PubMedGoogle Scholar
  77. Bull, A. T., 1970a Chemical composition of wild-type and mutant Aspergillus nidulans cell walls. The nature of polysaccharide and melanin constituents. J. Gen. Microbiol. 63:75–94.PubMedGoogle Scholar
  78. Bull, A. T., 1970b Inhibition of polysaccharases by melanin: enzyme inhibition in relation to mycolysis. Arch. Biochem. Biophys. 137:345–356.PubMedGoogle Scholar
  79. Bull, A. T. and B. L. A. Carter, 1973 The isolation of tyrosinase from Aspergillus nidulans, its kinetic and molecular properties and some consideration of its activity in vivo. J. Gen. Microbiol. 75:61–73.PubMedGoogle Scholar
  80. Bull, A. T. and B. M. Faulkner, 1964 Physiological and genetic effects of 8-azaguanine. Nature (Lond.) 203:506–507.Google Scholar
  81. Burr, K. W., H. M. Palmer and J. A. Roper, 1971 Mitotic non-conformity in Aspergillus nidulans: The effect of reduced DNA repair. Heredity 27:487.Google Scholar
  82. Butcher, A. C., 1968 The relationship between sexual outcrossing and heterokaryon incompatibility in Aspergillus nidulans. Heredity 23:443–452.PubMedGoogle Scholar
  83. Butcher, A. C., 1969 Non-allelic interactions and genetic isolation in wild populations of Aspergillus nidulans. Heredity 24:621–631.PubMedGoogle Scholar
  84. Butcher, A. C., J. Croft and M. Grindle, 1972 Use of genetic-environmental interaction analysis in the study of natural populations of Aspergillus nidulans. Heredity 29:263–283.Google Scholar
  85. Calef, E., 1957 Effect on linkage maps of selection of crossovers between closely linked markers. Heredity 11:265–279.Google Scholar
  86. Calvori, C. and G. Morpurgo, 1966 Analysis of induced mutations in Aspergillus nidulans. I. UV-and HNO2-induced mutations. Mutat. Res. 3:145–151.PubMedGoogle Scholar
  87. Carter, B. L. A. and A. T. Bull, 1969 Studies of fungal growth and intermediary carbon metabolism under steady and non-steady state conditions. Biotechnol. Bioeng. 11:785–804.Google Scholar
  88. Carter, B. L. A. and A. T. Bull, 1971 The effect of oxygen tension in the medium on the morphology and growth kinetics of Aspergillus nidulans. J. Gen. Microbiol. 65:265–273.Google Scholar
  89. Carter, B. L. A., A. T. Bull, S. J. Pirt and B. I. Rowley, 1971 Relationship between energy, substrate utilization and specific growth rate in Aspergillus nidulans. J. Bacteriol 108:309–313.PubMedGoogle Scholar
  90. Cerny, A., A. Capek and M. Semonsky, 1972 Antineoplastisch wirksame stoffe: 48 Mikrobielle katabolite der Aethylester von N-[8-(6-Purinylthio)-valeryl]-glycine,-diglycin und-triglycin sowie der entsprechenden saere. Pharmazie 27:298–299.PubMedGoogle Scholar
  91. Chang, L. T., J. E. Lennox and R. W. Tuveson, 1968 Induced mutation in UV-sensitive mutants of Aspergillus nidulans and Neurospora crassa. Mutat. Res. 5:217–224.PubMedGoogle Scholar
  92. Chojnacki, T., A. Paszewski and T. Sawicka, 1969 The formation of UDP glucose and UDP galactose in wild-type and mutants of Aspergillus nidulans. Acta Biochim. Pol. 16:185–191.PubMedGoogle Scholar
  93. Clutterbuck, A. J., 1965 A fawn conidia mutant in Aspergillus nidulans. Aspergillus Newsl. 6:12.Google Scholar
  94. Clutterbuck, A. J., 1968a New conidial colour mutants in Aspergillus nidulans. Aspergillus Newsl. 9:14.Google Scholar
  95. Clutterbuck, A. J., 1968b Gene symbols and nomenclature: Proposals and notes on them. Aspergillus Newsl. 9:26–29.Google Scholar
  96. Clutterbuck, A. J., 1969a Stock list of Aspergillus nidulans strains held at the Department of Genetics, University of Glasgow. Aspergillus Newsl. 10:30–37.Google Scholar
  97. Clutterbuck, A. J., 1969b Cell volume per nucleus in haploid and diploid strains of Aspergillus nidulans. J. Gen. Microbiol. 55:291–299.PubMedGoogle Scholar
  98. Clutterbuck, A. J., 1969c A mutational analysis of conidial development in Aspergillus nidulans. Genetics 63:317–327.PubMedGoogle Scholar
  99. Clutterbuck, A. J., 1969d Further comments on gene symbols. Aspergillus Newsl. 10:26–28.Google Scholar
  100. Clutterbuck, A. J., 1970a Synchronous nuclear division and septation in Aspergillus nidulans. J. Gen. Microbiol 60:133–135.PubMedGoogle Scholar
  101. Clutterbuck, A. J., 1970b A variegated position effect in Aspergillus nidulans. Genet. Res. 16:303–316.PubMedGoogle Scholar
  102. Clutterbuck, A. J., 1972 Absence of laccase from yellow-spored mutants of Aspergillus nidulans. J. Gen. Microbiol. 70:423–435.PubMedGoogle Scholar
  103. Clutterbuck, A. J., 1973a Gene symbols in Aspergillus nidulans. Genet. Res. 21:291–296.PubMedGoogle Scholar
  104. Clutterbuck, A. J., 1973b Interrelations between development and pigmentation during conidiation of Aspergillus nidulans. Genetics 74:s50.Google Scholar
  105. Clutterbuck, A. J. and D. J. Cove, 1974 The genetic loci of Aspergillus nidulans. In Handbook of Microbiology, edited by H. Lechevalier, Chemical Rubber Co., Cleveland, Ohio.Google Scholar
  106. Clutterbuck, A. J., and J. A. Roper, 1966 A direct determination of nuclear distribution in heterokaryons of Aspergillus nidulans. Genet. Res. 7:185–194.Google Scholar
  107. Cohen, B. L., 1972 Ammonium repression of extracellular protease in Aspergillus nidulans. J. Gen. Microbiol. 71:293–299.Google Scholar
  108. Cohen, B. L., 1973a Growth of Aspergillus nidulans in a thin liquid layer. J. Gen. Microbiol. 76:277–283.PubMedGoogle Scholar
  109. Cohen, B. L., 1973b The neutral and alkaline proteases of Aspergillus nidulans. J. Gen. Microbiol. 77:521–528.PubMedGoogle Scholar
  110. Cohen, B. L., 1973c Regulation of intracellular and extracellular neutral and alkaline proteases in Aspergillus nidulans. J. Gen. Microbiol. 79:311–320.PubMedGoogle Scholar
  111. Cohen, J., D. Katz and R. F. Rosenberger, 1969 Temperature sensitive mutant of Aspergillus nidulans lacking amino sugars in its cell wall. Nature (Lond.) 244:713–715.Google Scholar
  112. Coll, J. and J. A. Leal, 1972 The utilization of L-tryptophan as nitrogen source by Fusarium culmorum, Aspergillus nidulans and Penicillium italicum. Can. J. Microbiol. 18:1353–1356.PubMedGoogle Scholar
  113. Cooke, P., J. A. Roper and W. Watmough, 1970 Trypan blue-induced deletion strains of Aspergillus nidulans. Nature (Lond.) 226:276–277.Google Scholar
  114. Cove, D. J., 1966 The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim. Biophys. Acta 113:51–56.PubMedGoogle Scholar
  115. Cove, D. J., 1967 Kinetic studies of the induction of nitrate reductase and cytochrome c reductase in the fungus Aspergillus nidulans. Biochem. J. 104:1033–1039.PubMedGoogle Scholar
  116. Cove, D. J., 1969 Evidence for a near limiting intracellular concentration of a regulator substance. Nature (Lond.) 224:272–273.Google Scholar
  117. Cove, D. J., 1970 Control of gene action in Aspergillus nidulans. Proc. R. Soc. Lond. Ser. B Biol. Sci. 176:267–275.Google Scholar
  118. Cove, D. J. and A. Coddington, 1965 Purification of nitrate reductase and cytochrome c reductase from Aspergillus nidulans. Biochim. Biophys. Acta 110:312–318.PubMedGoogle Scholar
  119. Cove, D. J. and J. A. Pateman, 1963 Independently segregating genetic loci concerned with nitrate reductase activity in Aspergillus nidulans. Nature (Lond.) 198:262–263.Google Scholar
  120. Cove, D. J. and J. A. Pateman, 1969 Autoregulation of the synthesis of nitrate reductase in Aspergillus nidulans. J. Bacteriol. 97:1374–1378.PubMedGoogle Scholar
  121. Crackower, S. H. B., 1972 The effect of griseofulvin on mitosis in Aspergillus nidulans. Can. J. Microbiol 18:683–687.PubMedGoogle Scholar
  122. Croft, J. H., 1966 A reciprocal phenotypic instability affecting development in Aspergillus nidulans. Heredity 21:565–579.PubMedGoogle Scholar
  123. Cybis, J. and P. Weglenski, 1969 Effects of lysine on arginine uptake and metabolism in Aspergillus nidulans. Mol. Gen. Genet. 104:282–287.PubMedGoogle Scholar
  124. Cybis, J. and P. Weglenski, 1973 Arginase induction in Aspergillus nidulans. The appearance and decay of the coding capacity of messenger. Eur. J. Biochem. 30:262–268.Google Scholar
  125. Cybis, J., M. Piotrowska and P. Weglenski, 1970 Control of ornithine transcarbamylase formation in Aspergillus nidulans. Bull. Acad. Pol. Sci. Ser. Sci. Biol. 18:669–672.Google Scholar
  126. Cybis, J., M. Piotrowska and P. Weglenski, 1972a Genetic control of the arginine pathways in Aspergillus nidulans. Common regulation of anabolism and catabolism. Mol. Gen. Genet. 118:273–277.PubMedGoogle Scholar
  127. Cybis, J., M. Piotrowska and P. Weglenski, 1972b The genetic control of the arginine pathway in Aspergillus nidulans. Mutants blocked in arginine biosynthesis. Acta Microbiol. Pol. Ser. A Microbiol. Gen. 4:163–169.Google Scholar
  128. Da Cunha, P. R. 1970 A study of aspects of heterokaryosis in Aspergillus nidulans. Mem. Inst. Oswaldo Cruz Rio de J. 68:119–167.Google Scholar
  129. Darlington, A. J. and C. Scazzocchio, 1967 The use of analogues and the substratesensitivity of mutants in analysis of purine uptake and breakdown in Aspergillus nidulans. J. Bacteriol. 93:937–940.PubMedGoogle Scholar
  130. Darlington, A. J., and C. Scazzocchio, 1968 Evidence for an alternative pathway of xanthine oxidation in Aspergillus nidulans. Biochim. Biophys. Acta 166:569–571.PubMedGoogle Scholar
  131. Darlington, A. J., C. Scazzocchio and J. A. Pateman, 1965 Biochemical and genetical studies of purine breakdown in Aspergillus. Nature (Lond) 206:599–600.Google Scholar
  132. Davidse, L. C., 1973 Antimitotic activity of methyl benzimidazol-2-YL carbamate (MBC) in Aspergillus nidulans. Pest. Biochem. 3:317.Google Scholar
  133. Devi, C. S. S. and E. R. B. Shanmugasundaram, 1969 Genetics and biochemistry of a riboflavin requiring mutant. Curr. Sci. (Bangalore) 38:193–195.Google Scholar
  134. Dhillon, T. S. and E. D. Garber, 1970 Methionine-sensitive leucine-requiring mutants of Aspergillus nidulans. Z. Biol. 116:349–353.PubMedGoogle Scholar
  135. Ditchburn, P. and K. D. Macdonald, 1971 The differential effects of nystatin on growth of auxotrophic and prototrophic strains of Aspergillus nidulans. J. Gen. Microbiol. 67:299–306.PubMedGoogle Scholar
  136. Dorn, G. L. 1965a Genetic analysis of the phosphatases in Aspergillus nidulans. Genet. Res. 6:13–26.Google Scholar
  137. Dorn, G. L., 1965b Phosphatase mutants in Aspergillus nidulans. Science (Wash., D.C.) 150:1183–1184.Google Scholar
  138. Dorn, G. L. 1967a A revised linkage map of the eight linkage groups of Aspergillus nidulans. Genetics 56:619–631.PubMedGoogle Scholar
  139. Dorn, G. L., 1967b Purification of two alkaline phosphatases from Aspergillus nidulans. Biochim. Biophys. Acta 132:190–193.PubMedGoogle Scholar
  140. Dorn, G. L., 1968 Purification and characterization of phosphatase I from Aspergillus nidulans. J. Bwl. Chem. 243:3500–3506.Google Scholar
  141. Dorn, G. L. 1970 Genetic and morphological properties of undifferentiated and invasive variants of Aspergillus nidulans. Genetics 66:267–279.PubMedGoogle Scholar
  142. Dorn, G. L., 1972 Computerized meiotic mapping of Aspergillus nidulans. Genetics 72:595–605.PubMedGoogle Scholar
  143. Dorn, G. L. and W. Rivera, 1965 Supplementary list of located or partially located mutants in Aspergillus nidulans. Aspergillus Newsl. 6:13–15.Google Scholar
  144. Dorn, G. L. and W. Rivera, 1966 Kinetics of fungal growth and phosphatase formation in Aspergillus nidulans. J. Bacteriol. 92:1618–1622.PubMedGoogle Scholar
  145. Dorn, G. L., G. M. Martin and D. M. Purnell, 1967 Genetic and cytoplasmic control of undifferentiated growth in Aspergillus nidulans. Life Sci. 6:629–633.PubMedGoogle Scholar
  146. Downey, R. J., 1971 Characterization of the reduced nicotinamide adenine dinucleotide phosphate-nitrate reductase of Aspergillus nidulans. J. Bacteriol. 105:759–768.PubMedGoogle Scholar
  147. Downey, R. J., 1973a The role of molybdenum in formation of the NADPH-nitrate reductase by Aspergillus nidulans. Biochem. Biophys. Res. Commun. 50:920–925.PubMedGoogle Scholar
  148. Downey, R. J., 1973b The multimeric nature of NADPH-nitrate reductase from Aspergillus nidulans. Microbios 7:53–60.PubMedGoogle Scholar
  149. Downey, R. J. and D. J. Cove, 1971 Attempts to detect an alternative vital role for the reduced nicotinamide adenine dinucleotide phosphate-nitrate reductase structural gene in Aspergillus nidulans. J. Bacteriol. 106:1047–1049.PubMedGoogle Scholar
  150. Duarte, F. A. M., 1972 Efeitos mutagenicos de alguns esteres de acidos inorganicos em Aspergillus nidulans (Eidam) Winter. Cienc. Cult. (Sao Paulo) 24:42–52.Google Scholar
  151. Dulaney, E. L., 1947 Some aspects of penicillin production by Aspergillus nidulans. Mycologia 39:570–581.PubMedGoogle Scholar
  152. Dunn, E. and J. A. Pateman, 1972 Urea and thiourea uptake in Aspergillus nidulans. Heredity 29:129.Google Scholar
  153. Dunsmuir, P. and M. J. Hynes, 1973 Temperature-sensitive mutants affecting the activity and regulation of the acetamidase of Aspergillus nidulans. Mol. Gen. Genet. 123:333–346.PubMedGoogle Scholar
  154. Edelman, M., I. M. Verma and U. Z. Littauer, 1970 Mitochondrial ribosomal RNA from Aspergillus nidulans: Characterization of a novel molecular species. J. Mol. Biol. 49:67–83.PubMedGoogle Scholar
  155. Edelman, M., I. M. Verma, R. Herzog, E. Galun and U. Littauer, 1971 Physiochemical properties of mitochondrial ribosomal RNA from fungi. Eur. J. Biochem. 19:372–378.PubMedGoogle Scholar
  156. Elliott, C. G., 1956 Triploid Aspergillus nidulans. Microb. Genet. Bull. 13:7.Google Scholar
  157. Elliott, C. G., 1960a The cytology of Aspergillus nidulans. Genet. Res. 1:462–476.Google Scholar
  158. Elliott, C. G., 1960b Non-localized negative interference in Aspergillus nidulans. Heredity 15:247–262.Google Scholar
  159. Elorza, M. V., 1969 Toxicidad de los iones metalicos para Aspergillus nidulans. Microbiol. Espan. 22:131–138.Google Scholar
  160. Elorza, M. V. and H. N. Arst, 1971 Sorbose-resistant mutants of Aspergillus nidulans. Mol. Gen. Genet. 111:185–193.PubMedGoogle Scholar
  161. Elorza, M. V., H. N. Arst, D. J. Cove and C. Scazzocchio, 1969 Permeability properties of Aspergillus nidulans protoplasts. J. Bacteriol. 99:113–115.PubMedGoogle Scholar
  162. Fantes, P. A. and C. F. Roberts, 1973 β-galactosidase activity and lactose utilization in Aspergillus nidulans. J. Gen. Microbiol. 77:471–486.Google Scholar
  163. Faulkner, B. M. and C. F. Arlett, 1964 The “minute” cytoplasmic variant of Aspergillus nidulans. Heredity 19:63–73.PubMedGoogle Scholar
  164. Florance, E. R., W. C. Denison and T. C. Allen, 1972 Ultrastructure of dormant and germinating conidia of Aspergillus nidulans. Mycologia 64:115–123.PubMedGoogle Scholar
  165. Foley, J. M., N. H. Giles and C. F. Roberts, 1965 Complementation at the adenylosuccinase locus in Aspergillus nidulans. Genetics 52:1247–1263.PubMedGoogle Scholar
  166. Forbes, E., 1959a Use of mitotic segregation for assigning genes to linkage groups in Aspergillus nidulans. Heredity 13:67–80.Google Scholar
  167. Forbes, E., 1959b Recombination in the pro region in Aspergillus nidulans. Microb. Genet. Bull. 13:9–11.Google Scholar
  168. Forbes, E. and U. Sinha, 1966 Location of some temperature-sensitive mutants. Aspergillus Newsl. 7:17.Google Scholar
  169. Fortuin, J. J. H., 1971a Another two genes controlling mitotic intragenic recombination and recovery from UV damage in Aspergillus nidulans. I. UV sensitivity, complementation and location of six mutants. Mutat. Res. 11:149–162.PubMedGoogle Scholar
  170. Fortuin, J. J. H., 1971b Another two genes controlling mitotic intragenic recombination and recovery from UV damage in Aspergillus nidulans II. Recombination behaviour and X-ray sensitivity of uvsD and uvsE mutants. Mutat. Res. 11:265–277.PubMedGoogle Scholar
  171. Fortuin, J. J. H., 1971c Another two genes controlling mitotic intragenic recombination and recovery from UV damage in Aspergillus nidulans. III. Photoreactivation of UV damage in uvsD and uvsE mutants. Mutat. Res. 13:131–136.PubMedGoogle Scholar
  172. Fortuin, J. J. H., 1971d Another two genes controlling mitotic intragenic recombination and recovery from UV damage in Aspergillus nidulans. IV. Genetic analysis of mitotic intragenic recombinants from uvs + /uvs + , uvsD/uvsD and uvsE/uvsE diploids. Mutat. Res. 13:137–148.PubMedGoogle Scholar
  173. Fratello, B., G. Morpurgo and G. Sermonti, 1960 Induced somatic segregation in Aspergillus nidulans. Genetics 45:785–800.PubMedGoogle Scholar
  174. Gajewski, W. and J. Litwinska, 1968 Methionine loci and their suppressors in Aspergillus nidulans. Mol. Gen. Genet. 102:210–220.PubMedGoogle Scholar
  175. Gajewski, W., J. Litwinska, A. Paszewski and T. Chojnacki, 1972 Isolation and characterization of lactose non-utilizing mutants of Aspergillus nidulans. Mol. Gen. Genet. 116:99–106.PubMedGoogle Scholar
  176. Garber, E. D., G. W. Bryan, B. Capon, L. B. Liddle and N. W. Miller, 1961 Evidence for parthenogenesis in Aspergillus nidulans. Am. Nat. 95:309–313.Google Scholar
  177. Georgopoulos, S. G. and E. Georgadis, 1969 Iodoacetate resistance and radiosensitization of conidia of Aspergillus nidulans. Radiat. Bot. 9:69–73.Google Scholar
  178. Gibson, R. K. and J. F. Peberdy, 1972 Fine structure of protoplasts of Aspergillus nidulans. J. Gen. Microbiol. 72:529–538.PubMedGoogle Scholar
  179. Gorin, P. A. J. and D. E. Eveleigh, 1970 Extracellular 2-acetamido-2-deoxy-D-galacto-D-galactan from Aspergillus nidulans. Biochemistry 9:5023–5027.PubMedGoogle Scholar
  180. Gravel, R. A., E. Käfer, A. Niklewicz-Borkenhagen and P. Zambryski, 1970 Genetic and accumulation studies in sulphite-requiring mutants of Aspergillus nidulans. Can. J. Genet. Cytol. 12:831–840.PubMedGoogle Scholar
  181. Grindle, M., 1963a Heterokaryon incompatibility of unrelated strains in the Aspergillus nidulans group. Heredity 18:191–204.PubMedGoogle Scholar
  182. Grindle, M., 1963b Heterokaryon incompatibility of closely related wild isolates of Aspergillus nidulans. Heredity 18:397–405.PubMedGoogle Scholar
  183. Grindle, M. 1964 Nucleo-cytoplasmic interaction in the “red” cytoplasmic variant of As-pergillus nidulans. Heredity 19:75–95.PubMedGoogle Scholar
  184. Grivell, A. R. and J. F. Jackson, 1968 Thymidine kinase: evidence for its absence from Neurospora crassa and some other microorganisms and the relevance of this to the specific labeling of deoxyribonucleic acid. J. Gen. Microbiol. 54:307–317.PubMedGoogle Scholar
  185. Hankinson, O. and D. J. Cove, 1972a Genetic regulation of the pentose phosphate pathway of Aspergillus nidulans. Heredity 28:276.Google Scholar
  186. Hankinson, O. and D. J. Cove, 1972b The effect of nitrate on the activity of the D-man-nitol-1-phosphate dehydrogenase of Aspergillus nidulans. Heredity 29:121.Google Scholar
  187. Harada, T. and B. Spencer, 1962 The effect of sulphate assimilation on the induction of arylsulphatase synthesis in fungi. Biochem. J. 82:148–156.PubMedGoogle Scholar
  188. Harsanyi, Z. and G. L. Dorn, 1972 Purification and characterization of acid phosphatase V from Aspergillus nidulans. J. Bacteriol. 110:246–255.PubMedGoogle Scholar
  189. Hartley, M. J., 1969 Reversion of non-nitrate utilizing (niaD) mutants of Aspergillus nidulans. Mutat. Res. 7:163–170.PubMedGoogle Scholar
  190. Hartley, M. J., 1970a Contrasting complementation patterns in Aspergillus nidulans. Genet. Res. 16:123–125.PubMedGoogle Scholar
  191. Hartley, M. J., 1970b The frequency of reverse mutation at the XDH loci of Aspergillus nidulans. Mutat. Res. 10:175–183.PubMedGoogle Scholar
  192. Hastie, A. C., 1970 Benlate-induced instability of Aspergillus diploids. Nature (Lond.) 226:771.Google Scholar
  193. Hastie, A. C., and S. G. Georgopoulos, 1971 Mutational resistance to fungitoxic benzimidazole derivatives in Aspergillus nidulans. J. Gen. Microbiol. 67:371–373.PubMedGoogle Scholar
  194. Heagy, F. C. and J. A. Roper, 1952 Deoxyribonucleic acid content of haploid and diploid Aspergillus conidia. Nature (Lond.) 170:713–714.Google Scholar
  195. Hess, W. M. and D. L. Stocks, 1969 Surface characteristics of Aspergillus conidia. Mycologia 61:560–571.PubMedGoogle Scholar
  196. Hockenhull, D. J. D., 1948 Mustard gas mutation in Aspergillus nidulans. Nature (Lond.) 161:100.Google Scholar
  197. Hockenhull, D. J. D., 1949 The sulfur metabolism of mold fungi: The use of “biochemical mutant” strains of Aspergillus nidulans in elucidating the biosynthesis of cystine. Biochim. Biophys. Acta 3:326–335.Google Scholar
  198. Hockenhull, D. J. D., 1950 Studies in the metabolism of mold fungi. Preliminary study of the metabolism of carbon, nitrogen and sulphur by Aspergillus nidulans. J. Exp. Bot. 1:194–200.Google Scholar
  199. Holl, F. B., 1971 Immunochemical analysis of nitrate reductase in Aspergillus nidulans. Heredity 27:311.Google Scholar
  200. Holl, F. B. and C. Scazzocchio, 1970 Immunological differences between inducible and constitutive xanthine dehydrogenases in Aspergillus nidulans. FEBS (Fed. Eur. Biochem. Soc.) Lett. 12:51–53.Google Scholar
  201. Holloman, D. W., 1970 Ribonucleic acid synthesis during fungal spore germination. J. Gen. Microbiol. 62:75–87.Google Scholar
  202. Holt, G. and K. D. Macdonald, 1968a Isolation of strains with increased penicillin yield after hybridisation in Aspergillus nidulans. Nature (Lond.) 219:636–637.Google Scholar
  203. Holt, G. and K. D. Macdonald, 1968b Penicillin production and its mode of inheritance in Aspergillus nidulans. Antonie Van Leeuwenhoek J. Microbiol. Serol. 34:409–416.Google Scholar
  204. Houghton, J. A., 1970 A new class of slow growing non-perithecial mutants of Aspergillus nidulans. Genet. Res. 16:285–292.PubMedGoogle Scholar
  205. Houghton, J. A., 1971 Biochemical investigations of the slow growing non-perithecial (sgp) mutants of Aspergillus nidulans. Genet. Res. 17:237–244.Google Scholar
  206. Hussey, C., B. A. Orsi, J. Scott and B. Spencer, 1965 Mechanism of choline sulphate utilization in fungi. Nature (Lond.) 207:632–634.Google Scholar
  207. Hutter, R. and J. A. DeMoss, 1967 Enzyme analysis of the tryptophan pathway of Aspergillus nidulans. Genetics 55:241–247.PubMedGoogle Scholar
  208. Hynes, M. J., 1970 Induction and repression of amidase enzymes in Aspergillus nidulans. J. Bacteriol. 103:482–487.PubMedGoogle Scholar
  209. Hynes, M. J., 1972 Mutants with altered glucose repression of amidase enzymes in Aspergillus nidulans. J. Bacteriol. 111:717–722.PubMedGoogle Scholar
  210. Hynes, M. J., 1973a Alterations in the control of glutamate uptake in mutants of Aspergillus nidulans. Biochem. Biophys. Res. Commun. 54:685–689.PubMedGoogle Scholar
  211. Hynes, M. J., 1973b Pleiotropic mutants affecting the control of nitrogen metabolism in Aspergillus nidulans. Mol. Gen. Genet. 125:99–107.PubMedGoogle Scholar
  212. Hynes, M. J., 1973c The effect of lack of a carbon source on nitrate-reductase activity in Aspergillus nidulans. J. Gen. Microbiol. 79:155–157.PubMedGoogle Scholar
  213. Hynes, M. J. and J. A. Pateman, 1970a The genetic analysis of regulation of amidase synthesis in Aspergillus nidulans. I. Mutants able to utilize acrylamide. Mol. Gen. Genet. 108:97–106.PubMedGoogle Scholar
  214. Hynes, M. J. and J. A. Pateman, 1970b The genetic analysis of regulation of amidase synthesis in Aspergillus nidulans. II. Mutants resistant to fluoroacetamide. Mol. Gen. Genet. 108:107–116.PubMedGoogle Scholar
  215. Hynes, M. J. and J. A. Pateman, 1970c The use of amides as nitrogen sources by Aspergillus nidulans. J. Gen. Microbiol. 63:317–324.PubMedGoogle Scholar
  216. Jansen, G. J. O., 1964 UV-induced mitotic recombination in the paba1 region of Aspergillus nidulans. Genetica (The Hague) 35:127–131.Google Scholar
  217. Jansen, G. J. O., 1967 Some properties of the uvs1 mutant of Aspergillus nidulans. Aspergillus Newsl. 8:20–21.Google Scholar
  218. Jansen, G. J. O., 1970a Survival of uvsB and uvsC mutants of Aspergillus nidulans after UV-irradiation. Mutat. Res. 10:21–32.PubMedGoogle Scholar
  219. Jansen, G. J. O., 1970b Abnormal frequencies of spontaneous mitotic recombination in uvsB and uvsC mutants of Aspergillus nidulans. Mutat. Res. 10:33–41.PubMedGoogle Scholar
  220. Jansen, G. J. O., 1972 Mutator activity in uvs mutants of Aspergillus nidulans. Mol. Gen. Genet. 116:47–50.PubMedGoogle Scholar
  221. Jinks, J. L., 1954 Somatic selection in fungi. Nature (Lond.) 174:409–410.Google Scholar
  222. Jinks, J. L., 1956 Naturally occurring cytoplasmic changes in fungi. C. R. Trav. Lab. Carlsberg 26:183–203.Google Scholar
  223. Jinks, J. L., 1958 Cytoplasmic differentiation in fungi. Proc. R. Soc. Lond. Ser. B Biol. Sci. 148:314–321.Google Scholar
  224. Jinks, J. L., 1963 Cytoplasmic inheritance in fungi. In Methodology in Basic Genetics, edited by W. J. Burdette, pp. 325-354, Holden-Day, San Francisco, Calif.Google Scholar
  225. Jinks, J. L. and M. Grindle, 1963 The genetical basis of heterokaryon incompatibility in Aspergillus nidulans. Heredity 18:407–411.PubMedGoogle Scholar
  226. Jinks, J. L., C. E. Caten, G. Simchen and J. H. Croft, 1966 Heterokaryon incompatibility in Aspergillus nidulans. Heredity 21:227–239.PubMedGoogle Scholar
  227. Käfer, E., 1958 An eight-chromosome map of Aspergillus nidulans. Adv. Genet. 9:105–145.PubMedGoogle Scholar
  228. Käfer, E., 1960 High frequency of spontaneous and induced somatic segregation in Aspergillus nidulans. Nature (Lond.) 186:619–620.Google Scholar
  229. Käfer, E., 1961 The processes of spontaneous recombination in vegetative nuclei of Aspergillus nidulans. Genetics 46:1581–1609.PubMedGoogle Scholar
  230. Käfer, E., 1962 Translocations in stock strains of Aspergillus nidulans. Genetica (The Hague) 33:59–68.Google Scholar
  231. Käfer, E., 1963 Radiation effects and mitotic recombination in diploids of Aspergillus nidulans. Genetics 48:27–45.PubMedGoogle Scholar
  232. Käfer, E., 1965 The origins of translocations in Aspergillus nidulans. Genetics 52:217–232.PubMedGoogle Scholar
  233. Käfer, E., 1969 Effects of ultraviolet irradiation on heterozygous diploids of Aspergillus nidulans. II. Recovery from UV-induced mutation in mitotic recombinant sectors. Genetics 63:821–841.PubMedGoogle Scholar
  234. Käfer, E. and T. L. Chen, 1964 Translocations and recessive lethals induced in Aspergillus nidulans by ultraviolet light and gamma rays. Can. J. Genet. Cytol. 6:249–254.Google Scholar
  235. Käfer, E. and J. A. DeMoss, 1973 Formation of hybrid anthranilate synthetase in vitro from components of Aspergillus and Neurospora. Biochem. Genet. 9:203–211.PubMedGoogle Scholar
  236. Käfer, E. and A. Upshall, 1973 The phenotypes of the eight disomics and trisomies of Aspergillus nidulans. J. Hered. 64:35–38.PubMedGoogle Scholar
  237. Kameneva, S. V. and G. V. Evseeva, 1972 Genetic control of the sensitivity to mutagenic factors in Aspergillus nidulans. II. Sensitivity of uvs mutants to different mutagens. Genetika 8(3):72–78.Google Scholar
  238. Kameneva, S. V. and Y. M. Romanova, 1969 Genetic control of sensitivity to mutagenic factors in Aspergillus nidulans. I. Obtaining of mutants sensitive to UV light. Genetika 5(11):196–198.Google Scholar
  239. Katsatkina, I. D., 1959 Biochemical mutants of Aspergillus nidulans produced by irradiation with ultraviolet rays. Mikrobiologiia (Eng. transi.) 28:751–757.Google Scholar
  240. Katsatkina, I. D., 1961 The morphology of aminoacid deficient variants of Aspergillus nidulans as a function of the composition of the medium. Mikrobiologiia (Eng. transi.) 29:367–370.Google Scholar
  241. Katz, D. and R. F. Rosenberger, 1970a The utilization of galactose by an Aspergillus nidulans mutant lacking galactose phosphate-UDP glucose transferase and its relation to cell wall synthesis. Arch. Mikrobiol. 74:41–51.PubMedGoogle Scholar
  242. Katz, D. and R. F. Rosenberger, 1970b A mutation in Aspergillus nidulans producing hyphal walls which lack chitin. Biochim. Biophys. Acta 208:452–460.PubMedGoogle Scholar
  243. Katz, D. and R. F. Rosenberger, 1970c The effect of CO2 on the purine requirement of Aspergillus nidulans ad3 mutants. Biochim. Biophys. Acta 224:279–281.PubMedGoogle Scholar
  244. Katz, D. and R. F. Rosenberger, 1971a Hyphal wall synthesis in Aspergillus nidulans: Effect of protein synthesis inhibition and osmotic shock on chitin insertion and morphogenesis. J. Bacteriol. 108:184–190.PubMedGoogle Scholar
  245. Katz, D. and R. F. Rosenberger, 1971b Lysis of anAspergillus nidulans mutant blocked in chitin synthesis and its relation to wall assembly and wall metabolism. Arch. Mikrobiol. 80:284–292.PubMedGoogle Scholar
  246. Katz, D., D. Goldstein and R. F. Rosenberger, 1972 Model for branch initiation in Aspergillus nidulans based on measurements of growth parameters. J. Bacteriol. 109:1097–1100.PubMedGoogle Scholar
  247. Kessel, M. and R. F. Rosenberger, 1968 Regulation and timing of deoxyribonucleic acid synthesis in hyphae of Aspergillus nidulans. J. Bacteriol. 95:2275–2281.PubMedGoogle Scholar
  248. Kilbey, B. J., 1960 ’sage’: A colour modifier in Aspergillus nidulans. Nature (Lond.) 186:906–907.Google Scholar
  249. Kinghorn, J. R. and J. A. Pateman, 1973a NAD-and NADP-glutamate dehydrogenase activity and ammonium regulation in Aspergillus nidulans. J. Gen. Microbiol. 78:39–46.PubMedGoogle Scholar
  250. Kinghorn, J. R. and J. A. Pateman, 1973b Nicotinamide-adenine dinucleotide phosphate-linked glutamate dehydrogenase activity and ammonium regulation in Aspergillus nidulans. Biochem. Soc. Trans. 1:672–674.Google Scholar
  251. Kinghorn, J. R. and J. A. Pateman, 1973c The regulation of nicotinamide-adenine dinucleotide-linked glutamate dehydrogenase in Aspergillus nidulans. Biochem. Soc. Trans. 1:675–676.Google Scholar
  252. Kinghorn, J. R. and J. A. Pateman, 1974 The effect of carbon source on ammonium regulation in Aspergillus nidulans. Mol. Gen. Genet. 128:95–98.PubMedGoogle Scholar
  253. Klimczuk, J., 1970 Spontaneous and induced reversions of meth1 mutant of Aspergillus nidulans. Genet. Pol. 11:313–319.Google Scholar
  254. Kovalenko, S. P., 1964 Determination of the mutagenic activity of certain alkylating reagents by the method of back mutations with Aspergillus nidulans. Dokl. Akad. Nauk. SSSR (Engl. Trans.) 58:684–685.Google Scholar
  255. Kovalenko, S. P., 1972 High mutagenic effect of phenethyl nitrogen mustard and ethyleneiminopyrimidines in Aspergillus nidulans. Mutat. Res. 14:115–118.PubMedGoogle Scholar
  256. Kovalenko, S. P. and E. M. Tkachenko, 1973 A comparison of activities of nitrogen mustards in the induction of mitotic crossing-over in a diploid strain of Aspergillus nidulans. Genetika 9:97–101.Google Scholar
  257. Kovalenko, S. P., V. K. Panchenko and L. B. Rapp, 1969a Comparison of the mutagenic action of chemically similar bifunctional nitrogen mustards on Aspergillus nidulans. Doklady Biol. Sci. (Eng. Trans. Dokl. Akad. Nauk. SSSR Ser. Biokhim.) 187:548–550.Google Scholar
  258. Kovalenko, S. P., P. E. Vavrish and V. K. Panchenko, 1969b Mutagenic activity of some nitrogen mustards on Aspergillus nidulans. Tsitol. Genet. 3:252–254.Google Scholar
  259. Kovalenko, S. P., V. K. Panchenko and L. B. Rapp, 1970a The dependence of mutagenic activity of N-benzyl-N, N-di2chloroethylamine homologues on their chemical structure. Tsitol. Genet. 4:283.Google Scholar
  260. Kovalenko, S. P., G. V. Shishkin, V. K. Panchenko and L. B. Rapp, 1970b The influence of aromatic cycles and their substituents on the mutagenic activity of nitrogen mustards. Genetika 6:103–109.Google Scholar
  261. Kovalenko, S. P., V. K. Panchenko and L. B. Rapp, 1971 The mutagenic properties of chlorethyl derivatives of phenethylamine. Genetika 7:160–162.Google Scholar
  262. Kurzeja, K. C. and E. D. Garber, 1973 A genetic study of electrophoretically variant extracellular amylolytic enzymes of wild-type strains of Aspergillus nidulans. Can. J. Genet. Cytol. 15:275–287.Google Scholar
  263. Kuzyurina, L. A., 1959a The resistance of Aspergillus nidulans and Aspergillus niger conidia to ultraviolet rays. Mikrobiologiia (Eng. transi.) 28:33–39.Google Scholar
  264. Kuzyurina, L. A., 1959b Production of mutants by ultraviolet light. II. Morphological characteristics of Aspergillus nidulans variants obtained through irradiation with different doses of ultraviolet rays. Mikrobiologiia (Eng. transi.) 28:625–631.Google Scholar
  265. Kwiatowski, Z. A. 1962 Radiation action on the mitotic crossing-over in Aspergillus nidulans. Acta Microbiol. Pol. 11:3–11.Google Scholar
  266. Kwiatowski, Z. A. 1965 Studies on the mechanism of gene recombination in Aspergillus. I. Analysis of the stimulating effect of the removal of some metallic ions on mitotic recombination. Acta Microbiol. Pol. 14:3–13.Google Scholar
  267. Kwiatowski, Z. A. and K. Bohdanowicz, 1962 New mycelial mutants in Aspergillus nidulans. Acta Microbiol. Pol 11:17–20.Google Scholar
  268. Kwiatowski, Z. and K. Grad, 1965 A comparison of the ultraviolet effect on the mitotic recombination in two cistrons of Aspergillus nidulans. Acta Microbiol. Pol. 14:15–18.Google Scholar
  269. Lafont, P., J. Lafont and L. Frayssinet, 1970 La nidulotoxine: toxine d’Aspergillus nidulans Wint. Experientia (Basel) 26:61–62.Google Scholar
  270. Lanier, W. B., 1967 Apparently aberrant segregation of nutritional markers in Aspergillus nidulans. Bot. Gaz. 128:16–31.Google Scholar
  271. Lanier, W. B., R. W. Tuveson and J. E. Lennox, 1968 A radiation-sensitive mutant of Aspergillus nidulans. Mutat. Res. 5:23–31.PubMedGoogle Scholar
  272. Leal, J. A. and J. R. Villanueva, 1962 An improved selective medium for the formation of ascospores by Aspergillus nidulans. Nature (Lond.) 193:1106.Google Scholar
  273. Lhoas, P. 1961 Mitotic haploidisation by treatment of Aspergillus niger diploids with p-fluorophenylalanine. Nature (Lond.) 190:744.Google Scholar
  274. Lhoas, P. 1968 Growth rate and haploidisation of Aspergillus niger on medium containing p-fluorop he nylalanine. Genet. Res. 12:305–315.PubMedGoogle Scholar
  275. Lilly, L. J., 1965 An investigation of the suitability of the suppressors of meth1 in Aspergillus nidulans for the study of induced and spontaneous mutation. Mutat. Res. 2:192–195PubMedGoogle Scholar
  276. Loginova, L. G., 1960 On the activity of hydrolytic enzymes in the Aspergillus nidulans variant produced by irradiation with ultraviolet rays. Mikrobiologiia (Eng. transi.) 29:493–498.Google Scholar
  277. Loginova, L. G., 1961 The activity of some oxidative enzymes in an Aspergillus nidulans variant obtained by means of ultraviolet irradiation. Mikrobiologiya (Eng. transi.) 29:607–609.Google Scholar
  278. Luig, N. H., 1962 Recessive suppressors in Aspergillus nidulans closely linked to an auxotrophic mutant which they suppress. Genet. Res. 3:331–332.Google Scholar
  279. Lukaszkiewicz, Z. and N. J. Pieniazek, 1972 Mutations increasing the specificity of the sulphate permease of Aspergillus nidulans. Bull. Acad. Pol. Sci. 20:833–836.Google Scholar
  280. McCully, K. S. and E. Forbes, 1965 The use of p-fluorophenylalanine with “master strains” of Aspergillus nidulans for assigning genes to linkage groups. Genet. Res. 6:352–359.PubMedGoogle Scholar
  281. Mackintosh, M. E. and R. H. Pritchard, 1963 The production and replica plating of micro-colonies of Aspergillus nidulans. Genet. Res. 4:320–322.Google Scholar
  282. Mahoney, M. and D. Wilkie, 1958 An instance of cytoplasmic inheritance in Aspergillus nidulans. Proc. R. Soc. Lond. Ser. B Biol. Sci. 148:359–361.Google Scholar
  283. Mahoney, M. and D. Wilkie, 1962 Nucleo-cytoplasmic control of perithecial formation in Aspergillus nidulans. Proc. R. Soc. Lond. Ser. B Biol. Sci. 156:524–532.Google Scholar
  284. Mark, C. G. and A. H. Romano, 1971 Properties of the hexose transport systems of Aspergillus nidulans. Biochim. Biophys. Acta 249:216–226.PubMedGoogle Scholar
  285. Martinelli, S. D. and B. W. Bainbridge, 1974 Phenol oxidases in wild type and mutant strains of Aspergillus nidulans. in manuscript.Google Scholar
  286. Martinelli, S. D. and A. J. Clutterbuck, 1971 A quantitative survey of conidiation mutants in Aspergillus nidulans. J. Gen. Microbiol. 69:261–268.PubMedGoogle Scholar
  287. Mastropietro, M. and M. Princivalle, 1963 Dossaggio microbiologico di alcune vitamine del gruppo B. VIL Un nuovo metodo per la titolazione della riboflavina. Rend. Ist. Super Sanita 26:845–852.Google Scholar
  288. Mehrotra, B. S. and V. P. Agnihotri, 1961 Utilization and synthesis of oligosaccharides by some ascosporic members of the Aspergillus nidulans group. Phyton (Argentina) 16:195–205.Google Scholar
  289. Mehrotra, B. S. and V. P. Agnihotri, 1962 Nitrogen requirements of some ascoporic members of the Aspergillus nidulans group. Sydowia Ann. Mycol. 16:106–114.Google Scholar
  290. Millington-Ward, A. M. 1967 A vegetative instability in Aspergillus nidulans. Genetics 38:191–207.Google Scholar
  291. Millington-Ward, A. M. 1970 Recombination and transcription in the hisB and pabaA-1 loci of Aspergillus nidulans. Genetica (The Hague) 41:557–574.Google Scholar
  292. Millington-Ward, A. M., F. B. J. Koops and C. Van der Mark-Iken, 1971 Further data on the polarity of the paba1 locus of Aspergillus nidulans. Genetica (The Hague) 42:13–24.Google Scholar
  293. Morpurgo, G., 1962 A new method for estimating forward mutations in fungi: resistance to 8-azaguanine and p-fluorophenylalanine. Sci. Rep. Super. Sanita 2:9–12.Google Scholar
  294. Morpurgo, G., 1963a Induction of mitotic crossing over in Aspergillus nidulans by bifunctional alkylating agents. Genetics 48:1259–1263.PubMedGoogle Scholar
  295. Morpurgo, G., 1963b Somatic segregation induced by p-fluorophenylalanine. Aspergillus Newsl. 4:8.Google Scholar
  296. Morpurgo, G. and L. Volterra, 1966 Fine analysis of mitotic intracistron crossing-over in Aspergillus nidulans. Ann. Ist. Super. Sanita 2:426–428.PubMedGoogle Scholar
  297. Morpurgo, G. and L. Volterra, 1968 The nature of mitotic intragenic recombination in Aspergillus nidulans. Genetics 58:529–541.PubMedGoogle Scholar
  298. Naguib, K., 1959 The growth and metabolism of Aspergillus nidulans Eidam in surface culture. Can. J. Bot. 37:353–364.Google Scholar
  299. Naguib, K. and K. Saddik, 1960 Growth and metabolism of Aspergillus nidulans Eidam on different nitrogen sources in synthetic media conducive to fat formation. Can. J. Bot. 38:613–622.Google Scholar
  300. Naguib, K. and K. Saddik, 1961 The use of ammonium source of nitrogen in the metabolism of Aspergillus nidulans Eidam. Can. J. Bot. 39:955–964.Google Scholar
  301. Nakamura, T., 1962 Biochemical genetical studies on the pathway of sulphate assimilation in Aspergillus nidulans. J. Gen. Microbiol. 27:221–230.PubMedGoogle Scholar
  302. Nakamura, T. and R. Sato, 1960 Cysteine-s-sulphonate as an intermediate in microbial synthesis of cysteine. Nature (Lond.) 185:163–164.Google Scholar
  303. Nakamura, T. and R. Sato, 1962 Accumulation of s-sulphocysteine by a mutant strain of Aspergillus nidulans. Nature (Lond.) 193:481–482.Google Scholar
  304. Nakamura, T. and R. Sato, 1963 Synthesis from sulfate and accumulation of S-sulfocysteine by a mutant strain of Aspergillus nidulans. Biochem. J. 86:328–335.PubMedGoogle Scholar
  305. Nga, B. H. and J. A. Roper, 1968 Quantitative intrachromosomal changes arising at mitosis in Aspergillus nidulans. Genetics 58:193–209.PubMedGoogle Scholar
  306. Nga, B. H. and J. A. Roper, 1969 A system generating spontaneous intrachromosomal changes at mitosis in Aspergillus nidulans. Genet. Res. 14:63–70.PubMedGoogle Scholar
  307. Noronha, L. 1970 Genetic investigation of tryptophan-requiring mutants of Aspergillus nidulans. Indian J. Exp. Biol. 8:298–301.PubMedGoogle Scholar
  308. Ogata, W. N. 1962 Preservation of Neurospora stock cultures with anhydrous silica gel. Neurospora Newsl. 1:13.Google Scholar
  309. Oliver, P. T. P., 1972 Conidiophore and spore development in Aspergillus nidulans. J. Gen. Microbiol. 73:45–54.PubMedGoogle Scholar
  310. Oliver, P. T. P., 1973 Influence of cytochalasin B on hyphal morphogenesis of Aspergillus nidulans. Protoplasma 76:279–281.PubMedGoogle Scholar
  311. Oliver, P. T. P., 1974 Ultrastructural localization of free sulphydryl groups in developing conidiophores of Aspergillus nidulans. in manuscript.Google Scholar
  312. Page, M. M. and D. J. Cove, 1972 Alcohol and amine catabolism in the fungus Aspergillus nidulans. Biochem. J. 127:17P.PubMedGoogle Scholar
  313. Panicker, R. H. and E. R. B. Shanmugasundaram, 1962 Temperature-independent riboflavineless mutants of Aspergillus nidulans. Am. J. Bot. 49:555–559.Google Scholar
  314. Paszewski, A. and J. Grabski, 1973 β-cystathionase and O-acetylhomoserine sulphydrylase as the enzymes of alternative methionine biosynthetic pathways in Aspergillus nidulans. Acta Biochim. Pol. 20:159–168.PubMedGoogle Scholar
  315. Paszewski, A., T. Chojnacki, J. Litwinska and W. Gajewski, 1970 Regulation of lactose utilization in Aspergillus nidulans. Acta Biochim. Pol. 17:385–391.PubMedGoogle Scholar
  316. Patel, K. S., 1973 Occurrence of barrage phenomenon in Aspergillus nidulans. Curr. Sci. 42:144.Google Scholar
  317. Pateman, J. A., 1969 Regulation of synthesis of glutamate dehydrogenase and glutamine synthetase in micro-organisms. Biochem. J. 115:769–775.PubMedGoogle Scholar
  318. Pateman, J. A. and D. J. Cove, 1967 Regulation of nitrate reduction in Aspergillus nidulans. Nature (Lond.) 215:1234–1237.Google Scholar
  319. Pateman, J. A. and J. R. Kinghorn, 1974 Glutamic and aspartic acid uptake in Aspergillus nidulans. J. Bacteriol. in press.Google Scholar
  320. Pateman, J. A., D. J. Cove, B. M. Rever and D. B. Roberts, 1964 A common cofactor for nitrate reductase and xanthine dehydrogenase which also regulates the synthesis of nitrate reductase. Nature (Lond.) 201:58–60.Google Scholar
  321. Pateman, J. A., B. M. Rever and D. J. Cove, 1967 Genetic and biochemical studies of nitrate reduction in Aspergillus nidulans. Biochem. J. 104:103–111.PubMedGoogle Scholar
  322. Pateman, J. A., J. R. Kinghorn, E. Dunn and E. Forbes, 1973 Ammonium regulation in Aspergillus nidulans. J. Bacteriol. 114:943–950.PubMedGoogle Scholar
  323. Peberdy, J. F. and C. E. Buckley, 1973 Adsorption of fluorescent brighteners by regenerating protoplasts of Aspergillus nidulans. J. Gen. Microbiol. 74:281–288.Google Scholar
  324. Peberdy, J. F. and R. K. Gibson, 1971 Regeneration of Aspergillus nidulans protoplasts. J. Gen. Microbiol. 69:325–330.PubMedGoogle Scholar
  325. Pees, E., 1965 Polarized negative interference in the lys-51 region of Aspergillus nidulans. Experientia (Basel) 21:514–515.Google Scholar
  326. Pees, E., 1966 Lysine, histidine and isoleucine mutants. Aspergillus Newsl. 7:11–12.Google Scholar
  327. Pees, E. 1967 Genetic fine structure and polarized negative interference of the lys-51 (FL) locus of Aspergillus nidulans. Genetica (The Hague) 38:275–304.Google Scholar
  328. Pieniazek, N. J., P. P. Stepien and A. Paszewski, 1973a An Aspergillus nidulans mutant lacking cystathionine β-synthase: Identification of L-serine sulfhydrylase with cystathionine β-synthase and its distinctness from O-acetyl-L-serine sulfhydrylase. Biochim. Biophys. Acta 297:37–47.PubMedGoogle Scholar
  329. Pieniazek, N. J., I. M. Kowalska and P. P. Stepien, 1973b Deficiency in methionine adenosyl transferase resulting in limited repressibility of methionine biosynthetic enzymes in Aspergillus nidulans. Mol. Gen. Genet. 126:367–374.PubMedGoogle Scholar
  330. Piotrowska, M., M. Sawacki and P. Weglenski, 1969 Mutants of the arginine-proline pathway in Aspergillus nidulans. J. Gen. Microbiol. 55:301–305.PubMedGoogle Scholar
  331. Pirt, S. J., 1973 Estimation of substrate affinities (K s values) of filamentous fungi from colony growth rates. J. Gen. Microbiol. 75:245–247.Google Scholar
  332. Pollard, R., E. Käfer and M. Johnston, 1968 Influence of translocations on meiotic and mitotic nondisjunction in Aspergillus nidulans. Genetics 60:743–757.PubMedGoogle Scholar
  333. Pontecorvo, G. 1947 Genetic systems based on heterokaryosis. Cold Spring Harbor Symp. Quant. Biol. 11:193–201.Google Scholar
  334. Pontecorvo, G., 1949 Auxanographic techniques in biochemical genetics. J. Gen. Microbiol. 3:122–126.PubMedGoogle Scholar
  335. Pontecorvo, G., 1950 New fields in the biochemical genetics of micro-organisms. Biochem. Soc. Symp. 4:40–50.Google Scholar
  336. Pontecorvo, G. 1952a Genetic formulation of gene structure and function. Adv. Enzymol. 13:121–149.Google Scholar
  337. Pontecorvo, G., 1952b Genetic analysis of cell organization. Symp. Soc. Exp. Biol. 6:218–229.Google Scholar
  338. Pontecorvo, G., 1954 Mitotic recombination in the genetic system of filamentous fungi. Caryologia Suppl. 6:192–200.Google Scholar
  339. Pontecorvo, G., 1955 Gene structure and action in relation to heterosis. Proc. R. Soc. Lond. Ser. B Biol. Sci. 144:171–177.Google Scholar
  340. Pontecorvo, G., 1956 The parasexual cycle. Annu. Rev. Microbiol 10:393–400.PubMedGoogle Scholar
  341. Pontecorvo, G., 1958 Self reproduction and all that. Symp. Soc. Exp. Biol. 12:1–5.PubMedGoogle Scholar
  342. Pontecorvo, G., 1959 Trends in Genetic Analysis, Oxford University Press, London.Google Scholar
  343. Pontecorvo, G., 1962 Methods of microbial genetics in an approach to human genetics. Br. Med. Bull. 18:81–84.PubMedGoogle Scholar
  344. Pontecorvo, G. 1963 Microbial genetics: retrospect and prospect. Proc. R. Soc. Lond. Ser. B Biol. Sci. 158:1–23.Google Scholar
  345. Pontecorvo, G. and E. Käfer, 1956 Mapping the chromosome by means of mitotic recombination. Proc. R. Phys. Soc. Edinb. 25:16–20.Google Scholar
  346. Pontecorvo, G. and E. Käfer, 1958 Genetic analysis based on mitotic recombination. Adv. Genet. 9:71–104.PubMedGoogle Scholar
  347. Pontecorvo, G. and J. A. Roper, 1956 Resolving power of genetic analysis. Nature (Lond.) 178:83–84.Google Scholar
  348. Pontecorvo, G., J. A. Roper, D. W. Hemmons, K. D. Macdonald and A. W. Bufton, 1953 The genetics of Aspergillus nidulans. Adv. Genet. 5:141–238.PubMedGoogle Scholar
  349. Pontecorvo, G., E. Tarr-Gloor and E. Forbes, 1954 Analysis of mitotic recombination in Aspergillus nidulans. J. Genet. 52:226–237.Google Scholar
  350. Prasad, I., 1970 Mutagenic effects of the herbicide 3′-4′ dichloropropionanilide and its degradation products. Can. J. Microbiol. 16:369–372.PubMedGoogle Scholar
  351. Princivalle, M., 1958 Microbiologic assay of some vitamins of the B group. IV. Titration of p-aminobenzoic acid (PABA). Rend. Ist. Super Sanita 21:928–933.Google Scholar
  352. Princivalle, M. and C. Caradonna, 1962 Dossaggio microbiologico di alcune vitamine del gruppo B. VI. Un nuovo metodo per la titolazione della vitamina PP. Ann. Chim. 52:1248–1253.Google Scholar
  353. Pritchard, R. H., 1954 Ascospores with diploid nuclei in Aspergillus nidulans. Caryologia (Florence) 6, Suppl. 1:1117.Google Scholar
  354. Pritchard, R. H., 1955 The linear arrangement of a series of alleles of Aspergillus nidulans. Heredity 9:343–371.Google Scholar
  355. Pritchard, R. H., 1960a Localized negative interference and its bearing on models of gene recombination. Genet. Res. 1:1–24.Google Scholar
  356. Pritchard, R. H., 1960b The bearing of recombination analysis at high resolution on genetic fine structure in Aspergillus nidulans and the mechanism of recombination in higher organisms. Symp. Soc. Gen. Microbiol. 10:155–180.Google Scholar
  357. Pritchard, R. H., 1968 Experiments with Aspergillus nidulans. In Experiments in Microbial Genetics, edited by R. C. Clowes and W. Hayes, Blackwell, Oxford.Google Scholar
  358. Purnell, D. M., 1973 The effects of specific auxotrophic mutations on the virulence of Aspergillus nidulans for mice. Mycopath. Mycol. Appl. 50:195–203.Google Scholar
  359. Purnell, D. M. and G. M. Martin, 1971 Aspergillus nidulans: Association of certain alkaline phosphatase mutants with decreased virulence in mice. J. Infect. Dis. 123:305–306.PubMedGoogle Scholar
  360. Purnell, D. M. and G. M. Martin, 1973a Heterozygous diploid strains of Aspergillus nidulans: enhanced virulence for mice in comparison to a prototrophic haploid strain. Mycopath. Mycol. Appl. 49:307–319.Google Scholar
  361. Purnell, D. M. and G. M. Martin, 1973b A morphologic mutation in Aspergillus nidulans associated with increased virulence in mice. Mycopath. Mycol. Appl. 51:75–79.Google Scholar
  362. Putrament, A., 1964 Mitotic recombination in the paba1 cistron of Aspergillus nidulans. Genet. Res. 5:316–327.Google Scholar
  363. Putrament, A., 1966 Diepoxybutane-induced mitotic recombination in Aspergillus nidulans. Proceedings of the Symposium on Mutational Process, Prague, pp. 107-114, Academia, Prague.Google Scholar
  364. Putrament, A., 1967a On the mechanism of mitotic recombination in Aspergillus nidulans. I. Intragenic recombination and DNA replication. Mol. Gen. Genet. 100:307–320.PubMedGoogle Scholar
  365. Putrament, A., 1967b On the mechanism of mitotic recombination in Aspergillus nidulans. II. Simultaneous recombination within two very closely linked cistrons. Mol. Gen. Genet. 100:321–336.PubMedGoogle Scholar
  366. Putrament, A., J. Guzewska and D. Pieniazek, 1970 Further characteristics of methionine mutants and their suppressors in Aspergillus nidulans. Mol. Gen. Genet. 109:209–218.Google Scholar
  367. Putrament, A., T. Rozbicka and K. Wojciecowska, 1971 The highly polarized recombination pattern within the methA gene of Aspergillus nidulans. Genet. Res. 17:125–131.PubMedGoogle Scholar
  368. Radha, K. and E. R. B. Shanmugasundaram, 1962 Genetics and biochemistry of riboflavin auxotrophs of Aspergillus nidulans. Nature (Lond.) 193:165–166.Google Scholar
  369. Rao, K. K. and V. V. Modi, 1968 Metabolic changes in biotin-deficient Aspergillus nidulans. Can. J. Microbiol. 14:813–815.PubMedGoogle Scholar
  370. Rao, K. K. and V. V. Modi, 1970 Effect of ammonium ions on the growth of Aspergillus nidulans. Experientia (Basel). 26:590–591.Google Scholar
  371. Rao, K. K. and V. V. Modi, 1972 Biochemical changes in biotin deficient Aspergillus nidulans. Ind. J. Exp. Biol. 10:385–388.Google Scholar
  372. Raper, K. B. and D. I. Fennell, 1965 The Genus Aspergillus, Williams and Wilkins, Baltimore.Google Scholar
  373. Roberts, C. F., 1959 A replica plating technique for the isolation of nutritionally exacting mutants of a filamentous fungus (Aspergillus nidulans). J. Gen. Microbiol. 20:540–548.PubMedGoogle Scholar
  374. Roberts, C. F., 1963a The genetic analysis of carbohydrate utilization in Aspergillus nidulans. J. Gen. Microbiol. 31:45–48.PubMedGoogle Scholar
  375. Roberts, C. F., 1963b The adaptive metabolism of D-galactose in Aspergillus nidulans. J. Gen. Microbiol. 31:285–295.PubMedGoogle Scholar
  376. Roberts, C. F., 1964 Complementation in balanced heterokaryons and heterozygous diploids of Aspergillus nidulans. Genet. Res. 5:211–229.Google Scholar
  377. Roberts, C. F., 1967 Complementation analysis of the tryptophan pathway of Aspergillus nidulans. Genetics 55:233–239.PubMedGoogle Scholar
  378. Roberts, C. F., 1968 Further analysis of the group E mutants in Aspergillus nidulans. Heredity 23:467.Google Scholar
  379. Roberts, C. F., 1969 Isolation of multiple aromatic mutants in Aspergillus nidulans. Aspergillus Newsl. 10:19–20.Google Scholar
  380. Roberts, C. F., 1970 Enzyme lesions in galactose non-utilizing mutants of Aspergillus nidulans. Biochim. Biophys. Acta 201:267–283.PubMedGoogle Scholar
  381. Robinow, C. F. and C. E. Caten, 1969 Mitosis in Aspergillus nidulans. J. Cell Sci. 5:403–431.PubMedGoogle Scholar
  382. Robinson, J. H., C. Anthony and W. T. Drabble, 1973a The acidic amino-acid permease of Aspergillus nidulans. J. Gen. Microbiol. 79:53–63.PubMedGoogle Scholar
  383. Robinson, J. H., C. Anthony and W. T. Drabble, 1973b Regulation of the acidic aminoacid permease of Aspergillus nidulans. J. Gen. Microbiol. 79:65–80.PubMedGoogle Scholar
  384. Romano, A. H. and H. L. Kornberg, 1968 Regulation of sugar utilization by Aspergillus nidulans. Biochim. Biophys. Acta. 158:491–493.PubMedGoogle Scholar
  385. Romano, A. H. and H. L. Kornberg, 1969 Regulation of sugar uptake by Aspergillus nidulans. Proc. R. Soc. Lond. Ser. B Biol. Sci. 173:475–490.Google Scholar
  386. Roper, J. A., 1950 Search for linkage between genes determining a vitamin requirement. Nature (Lond.) 166:956.Google Scholar
  387. Roper, J. A. 1952 Production of heterozygous diploids in filamentous fungi. Experientia (Basel) 8:14–15.Google Scholar
  388. Roper, J. A., 1958 Nucleo-cytoplasmic interactions in Aspergillus nidulans. Cold Spring Harbor Symp. Quant. Biol. 23:141–154.PubMedGoogle Scholar
  389. Roper, J. A., 1961 The steps in the parasexual cycle. In Recent Advances in Botany, pp. 375–379, University of Toronto Press, Toronto.Google Scholar
  390. Roper, J. A. 1966a Culture temperature and biotin requirement in Aspergillus. Aspergillus Newsl. 7:22.Google Scholar
  391. Roper, J. A., 1966b Mechanisms of inheritance: The parasexual cycle. In The Fungi, Vol. 2, pp. 589–617, edited by G. C. Ainsworth and A. S. Sussman, Academic Press, New York.Google Scholar
  392. Roper, J. A., 1971 Aspergillus. In Chemical Mutagens, edited by A. Hollaender, Vol. 2, Ch. 12, pp. 343–363. Plenum Press, New York.Google Scholar
  393. Roper, J. A. and J. L. De Azevedo, editors, 1970 Questionaire on gene symbols. Aspergillus Newsl. 11:18–19.Google Scholar
  394. Roper, J. A. and E. Käfer, 1957 Acriflavine-resistant mutants of Aspergillus nidulans. J. Gen. Microbiol. 16:660–667.PubMedGoogle Scholar
  395. Roper, J. A. and B. H. Nga, 1969 Mitotic non-conformity in Aspergillus nidulans: The production of hypodiploid and hypohaploid nuclei. Genet. Res. 14:127–163.PubMedGoogle Scholar
  396. Roper, J. A. and R. H. Pritchard, 1955 The recovery of the complementary products of mitotic crossing over. Nature (Lond.) 175:639.Google Scholar
  397. Roper, J. A., H. M. Palmer and W. A. Watmough, 1972 Mitotic non-conformity in Aspergillus nidulans: The effects of caffeine. Mol. Gen. Genet. 118:125–133.PubMedGoogle Scholar
  398. Rosenberger, R. F. and M. Kessel, 1967 Synchrony of nuclear replication in individual hyphae of Aspergillus nidulans. J. Bacteriol. 94:1464–1469.PubMedGoogle Scholar
  399. Rosenberger, R. F. and M. Kessel, 1968 Non-random sister chromatid segregation and nuclear migration in hyphae of Aspergillus nidulans. J. Bacteriol. 96:1208–1213.PubMedGoogle Scholar
  400. Rowlands, R. T. and G. Turner, 1973 Nuclear and extranuclear inheritance of oligomycin resistance in Aspergillus nidulans. Mol. Gen. Genet. 126:201–216.PubMedGoogle Scholar
  401. Rowley, B. I. and A. T. Bull, 1973 Chemostat for the cultivation of moulds. Lab. Pract. 22:286–289.PubMedGoogle Scholar
  402. Rowley, B. I. and S. J. Pirt 1972 Melanin production by Aspergillus nidulans in batch and chemostat cultures. J. Gen. Microbiol. 72:553–563.PubMedGoogle Scholar
  403. Sadasivam, S., R. Shanmugasundaram and E. R. B. Shanmugasundaram, 1969 The pinkish-red pigment produced by an adenineless mutant of Aspergillus nidulans. Indian J. Biochem. 6:237.PubMedGoogle Scholar
  404. Sadique, J., R. Shanmugasundaram and E. R. B. Shanmugasundaram, 1966a Formation of 4,5-diaminouracil in a riboflavineless mutant of Aspergillus nidulans. Naturwissenschaften 53:282.PubMedGoogle Scholar
  405. Sadique, J., R. Shanmugasundaram and E. R. B. Shanmugasundaram, 1966b Isolation of 6,7-dimethyl-8-ribityl lumazine from a riboflavineless mutant of Aspergillus nidulans. Experientia (Basel) 22:32.Google Scholar
  406. Sadique, J., R. Shanmugasundaram and E. R. B. Shanmugasundaram, 1966c Isolation of 5-amino-4-ribitylaminouracil from a riboflavineless mutant of Aspergillus nidulans. Biochem. J. 101:2C–3C.PubMedGoogle Scholar
  407. Sadique, J., R. Shanmugasundaram and E. R. B. Shanmugasundaram, 1966d A pair of pteridine derivatives in a heterokaryon of two mutants of Aspergillus nidulans. Naturwissenschaften 53:179.PubMedGoogle Scholar
  408. Saxena, R. K. and U. Sinha, 1973 Conidiation of Aspergillus nidulans in submerged liquid culture. J. Gen. Appl. Microbiol. 19:141–146.Google Scholar
  409. Scazzocchio, C., 1970 Nuclear compartmentalisation in the control of gene action in Aspergillus nidulans. Heredity 25:683.Google Scholar
  410. Scazzocchio, C., 1973 The genetic control of molybdoflavoproteins in Aspergillus nidulans. II. Use of the NADH dehydrogenase activity associated with xanthine dehydrogenase to investigate substrate and product induction. Mol. Gen. Genet. 125:147–155.PubMedGoogle Scholar
  411. Scazzocchio, C. and A. J. Darlington, 1967 The genetic control of xanthine dehydrogenase and urate oxidase synthesis in Aspergillus nidulans. Bull. Soc. Chim. Biol. 49:1503–1508.PubMedGoogle Scholar
  412. Scazzocchio, C. and A. J. Darlington, 1968 The induction and repression of the enzymes of purine breakdown in Aspergillus nidulans. Biochim. Biophys. Acta 166:557–568.PubMedGoogle Scholar
  413. Scazzocchio, C., F. B. Holl and A. I. Foguelman, 1973 The genetic control of molybdoflavoproteins in Aspergillus nidulans. Allopurinol-resistant mutants constitutive for xanthine-dehydrogenase. Eur. J. Biochem. 36:428–445.PubMedGoogle Scholar
  414. Scott, B. R. and T. Alderson, 1971 The random (non-specific) forward mutational response of gene loci in Aspergillus conidia after photosensitisation to near ultraviolet light (365 nm) by 8-methoxypsoralen. Mutat. Res. 12:29–34.PubMedGoogle Scholar
  415. Scott, B. R., T. Alderson and D. G. Papworth, 1972 The effect of radiation on the Aspergillus conidium. I. Radiation sensitivity and a “germination inhibitor” Radiat. Bot. 12:45–50.Google Scholar
  416. Scott, B. R., T. Alderson and D. G. Papworth, 1973 The effect of plating densities on the retrieval of methionine suppressor mutations after ultraviolet or gamma irradiation of Aspergillus. J. Gen. Microbiol. 75:235–239.Google Scholar
  417. Scott, J. M. and B. Spencer, 1968 Regulation of choline sulphatase synthesis and activity in Aspergillus nidulans. Biochem. J. 106:471–477.PubMedGoogle Scholar
  418. Selvam, R. and K. R. Shanmugasundaram, 1972 Absence of creatinine metabolism in the fungus Aspergillus nidulans. Curr. Sci. (Bangalore) 41:144.Google Scholar
  419. Sermonti, G., 1968 List of proposed symbols. Aspergillus Newsl. 9:24–26.Google Scholar
  420. Shanfield, B. and E. Käfer, 1969 UV-sensitive mutants increasing mitotic crossing over in Aspergillus nidulans. Mutat. Res. 7:485–487.PubMedGoogle Scholar
  421. Shanfield, B. and E. Käfer, 1971 Chemical induction of mitotic recombination in Aspergillus nidulans. Genetics 67:209–219.PubMedGoogle Scholar
  422. Shanmugasundaram, R. and E. R. B. Shanmugasundaram, 1965 Studies on the heterokaryotic vigour in the decomposition of riboflavin. Curr. Sci. (Bangalore) 33:747–748.Google Scholar
  423. Sharma, R. P., 1970 Combined effect of physical and chemical mutagens on mutation frequency in Aspergillus nidulans. Indian J. Genet. Plant Breed. 30:199–211.Google Scholar
  424. Shepherd, C. J., 1956 Pathways of cysteine synthesis in Aspergillus nidulans. J. Gen. Microbiol. 15:29–38.PubMedGoogle Scholar
  425. Shepherd, C. J. 1957 Changes occurring in the composition of Aspergillus nidulans conidia during germination. J. Gen. Microbiol. 16: i. Google Scholar
  426. Siddiqi, O. H., 1962a Mutagenic action of nitrous acid on Aspergillus nidulans. Genet. Res. 3:303–314.Google Scholar
  427. Siddiqi, O. H., 1962b The fine genetic structure of the paba1 region of Aspergillus nidulans. Genet. Res. 3:69–89.Google Scholar
  428. Siddiqi, O. H. and A. Putrament, 1963 Polarized negative interference in the pabal region of Aspergillus nidulans. Genet. Res. 4:12–20.Google Scholar
  429. Siddiqi, O. H., B. N. Apte and M. P. Pitale, 1966 Genetic regulation of aryl sulphatases in Aspergillus nidulans. Cold Spring Harbor Symp. Quant. Biol. 31:381–382.Google Scholar
  430. Singh, J. and T. K. Walker, 1955 Influence of pH of the medium on the characteristics and composition of Aspergillus nidulans fat. J. Sci. Ind. Res. Sect. C. 15:222–224.Google Scholar
  431. Singh, J. and T. K. Walker, 1956 Changes in the composition of the fat of Aspergillus nidulans with age of the culture. Biochem. J. 62:286–289.PubMedGoogle Scholar
  432. Singh, J., T. K. Walker and M. L. Meara, 1955 The component fatty acids of the fat of Aspergillus nidulans. Biochem. J. 61:85–88.PubMedGoogle Scholar
  433. Sinha, U., 1967 Aromatic amino acid biosynthesis and para-fluorophenylalanine resistance in Aspergillus nidulans. Genet. Res. 10:261–272.PubMedGoogle Scholar
  434. Sinha, U., 1969 Genetic control of the uptake of amino acids in Aspergillus nidulans. Genetics 62:495–505.PubMedGoogle Scholar
  435. Sinha, U., 1970 Competition between leucine and phenylalanine and its relation to p-fluorophenylalanine-resistant mutations in Aspergillus nidulans. Arch. Mikrobiol. 72:308–317.PubMedGoogle Scholar
  436. Sinha, U., 1972 Studies with p-fluorophenylalanine-resistant mutants of Aspergillus nidulans. Beitr. Biol. Pflanz. 48:171–180.Google Scholar
  437. Skinner, V. M. and S. Armitt, 1972 Mutants of Aspergillus nidulans lacking pyruvate carboxylase. FEBS (Fed. Eur. Biochem. Soc.) Lett. 20:16–18.Google Scholar
  438. Sneath, P. H. A., 1955 Putrescine as an essential growth factor for a mutant of Aspergillus nidulans. Nature (Lond.) 175:818.Google Scholar
  439. Sorger, G. J., 1963 TPNH-cytochrome c reductase and nitrate reductase in mutant and wild-type Neurospora and Aspergillus. Biochem. Biophys. Res. Comm. 12:395–401.PubMedGoogle Scholar
  440. Spencer, B. and B. G. Moore, 1973 Specific sulphate binding in Aspergillus nidulans during sulphate transport. Biochem. Soc. Trans. 1:304–306.Google Scholar
  441. Spencer, B., E. C. Hussey, B. A. Orsi and J. M. Scott, 1968 Mechanism of choline O-sulphate utilization in fungi. Biochem J. 106:461–469.PubMedGoogle Scholar
  442. Sternlight, E., D. Katz and R. F. Rosenberger, 1973 Subapical wall synthesis and wall thickening induced by cycloheximide in hyphae of Aspergillus nidulans. J. Bacteriol. 114:819–823.Google Scholar
  443. Stevens, L. and A. Heaton, 1973 Induction, partial purification and properties of ornithine transaminase from Aspergillus nidulans. Biochem. Soc. Trans. 1:749–751.Google Scholar
  444. Strickland, W. N., 1958a Abnormal tetrads in Aspergillus nidulans. Proc. R. Soc. Lond. Ser. B Biol. Sci. 148:533–542.Google Scholar
  445. Strickland, W. N., 1958b An analysis of interference in Aspergillus nidulans. Proc. R. Soc. Lond. Ser. B Biol. Sci. 149:82–101.Google Scholar
  446. Strigini, P. and G. Morpurgo, 1961 Biotin requirement and carbon and sulphur sources in Aspergillus and Neurospora. Nature (Lond.) 190:557.Google Scholar
  447. Strigini, P., C. Rossi and G. Sermonti, 1963 Effects of disintegration of incorporated 32P in Aspergillus nidulans. J. Mol. Biol. 7:683–699.PubMedGoogle Scholar
  448. Tector, M. A. and E. Käfer, 1962 Radiation-induced chromosomal aberrations and lethals in Aspergillus nidulans. Science (Wash., D.C.) 136:1056–1057.Google Scholar
  449. Threlfall, R. J., 1968 The genetics and biochemistry of mutants of Aspergillus nidulans resistant to chlorinated nitrobenzenes. J. Gen. Microbiol. 52:35–44.Google Scholar
  450. Threlfall, R. J., 1972 Effect of pentachloronitrobenzene (PCNB) and other chemicals on sensitive and PCNB-resistant strains of Aspergillus nidulans. J. Gen. Microbiol. 71:173–180.Google Scholar
  451. Trinci, A. P. J., 1969 A kinetic study of the growth of Aspergillus nidulans and other fungi. J. Gen. Microbiol. 57:11–24.PubMedGoogle Scholar
  452. Trinci, A. P. J., 1970a Kinetics of apical and lateral branching in Aspergillus nidulans and Geotrichum lactis. Trans. Br. Mycol. Soc. 55:17–28.Google Scholar
  453. Trinci, A. P. J., 1970b Kinetics of the growth of mycelial pellets of Aspergillus nidulans. Arch. Mikrobiol. 73:353–367.Google Scholar
  454. Trinci, A. P. J., 1971 Influence of the width of the peripheral growth zone on the radial growth rate of fungal colonies on solid media. J. Gen. Microbiol. 67:325–344.Google Scholar
  455. Trinci, A. P. J. and K. Gull, 1970 Effect of actidione, griseofulvin and triphenyltin acetate on the kinetics of fungal growth. J. Gen. Microbiol. 60:287–292.PubMedGoogle Scholar
  456. Trinci, A. P. J. and C. Whittaker, 1968 Self-inhibition of spore germination in Aspergillus nidulans. Trans. Brit. Mycol. Soc. 51:594–596.Google Scholar
  457. Upshall, A., 1966 Somatically unstable mutants of Aspergillus nidulans. Nature (Lond.) 209:1113–1115.Google Scholar
  458. Upshall, A., 1971 Phenotypic specificity of aneuploid states in Aspergillus nidulans. Genet. Res. 18:167–171.PubMedGoogle Scholar
  459. Van Arkel, G. A., 1962 A new colour mutant “pale.” Aspergillus Newsl. 3:4.Google Scholar
  460. Van Arkel, G. A., 1963 Sodium arsenate as an inducer of somatic reduction. Aspergillus Newsl. 4:9.Google Scholar
  461. Verbina, N. M., 1958 On some peculiarities of development of Aspergillus nidulans variants produced by ultraviolet irradiation. Mikrobiologiia (Eng. transi.) 27:164–171.PubMedGoogle Scholar
  462. Verbina, N. M., 1959 Biomass accumulation in greatly altered variants of Aspergillus nidulans under various conditions of cultivation. Mikrobiologiia (Eng. transi.) 28:355–361.Google Scholar
  463. Verbina, N. M., 1960 Respiration of greatly modified Aspergillus nidulans variants obtained by ultraviolet irradiation. Mikrobiologiia Eng. transi.) 29:144–146.Google Scholar
  464. Verma, S. and U. Sinha, 1973 Inhibition of growth by amino acid analogues in Aspergillus nidulans. Beitr. Biol. Pflanzen 49:47–58.Google Scholar
  465. Verma, I. M., M. Edelman, M. Herzberg and U. Z. Littauer, 1970 Size determination of mitochondrial ribosomal RNA from Aspergillus nidulans by electron microscopy. J. Mol. Biol. 52:138–140.Google Scholar
  466. Verma, I. M., M. Edelman and U. Z. Littauer, 1971 A comparison of nucleotide sequences from mitochondrial and cytoplasmic RNA of Aspergillus nidulans. Eur. J. Biochem. 19:124–129.PubMedGoogle Scholar
  467. Waldron, C. and C. F. Roberts, 1973 Cytoplasmic inheritance of a cold-sensitive mutant in Aspergillus nidulans. J. Gen. Microbiol. 78:379–381.PubMedGoogle Scholar
  468. Warr, J. R. and J. A. Roper, 1965 Resistance to various inhibitors in Aspergillus nidulans. J. Gen. Microbiol. 40:273–281.PubMedGoogle Scholar
  469. Weglenski, P., 1966 Genetical analysis of proline mutants and their suppressors in Aspergillus nidulans. Genet. Res. 8:311–321.PubMedGoogle Scholar
  470. Weglenski, P., 1967 The mechanism of action of some proline suppressors in Aspergillus nidulans. J. Gen. Microbiol. 47:77–85.PubMedGoogle Scholar
  471. Weijer, J. and S. H. Weisberg, 1966 Karyokinesis of the somatic nuclei of Aspergillus nidulans. I. The juvenile chromosome cycle (Feulgen staining). Can. J. Genet. Cytol. 8:361–374.Google Scholar
  472. Weisberg, S. H. and G. Turian, 1971 Ultrastructure of Aspergillus nidulans conidia and conidial lomasomes. Protoplasma 72:55–67.PubMedGoogle Scholar
  473. Weisberg, S. H. and J. Weijer, 1968 Karyokinesis of the somatic nucleus of Aspergillus nidulans. II. Nuclear events during hyphal differentiation. Can. J. Genet. Cytol. 10:699–722.PubMedGoogle Scholar
  474. Wilson, J. D. and E. L. Powers, 1970 X-ray sensitivity and modifying effects of water in conidia of Aspergillus nidulans. Radiat. Res. 43:698–710.PubMedGoogle Scholar
  475. Winder, F. G. and G. R. Campbell, 1973 The deoxyribonucleases of Aspergillus nidulans. Heredity 31:423.Google Scholar
  476. Wohlrab, G. and R. W. Tuveson, 1969 Effects of liquid holding on the induction of mutations in an ultraviolet-sensitive strain of Aspergillus nidulans. Mutat. Res. 8:265–275.PubMedGoogle Scholar
  477. Wood, S. and E. Käfer, 1967 Twin-spots as evidence for mitotic crossing-over in Aspergillus nidulans. Nature (Lond.) 216:63–64.Google Scholar
  478. Wood, S. and E. Käfer, 1969 Effects of ultraviolet irradiation on heterozygous diploids of Aspergillus nidulans. I. UV-induced mitotic crossing over. Genetics 62:507–518.PubMedGoogle Scholar
  479. Wright, P. J. and J. A. Pateman, 1970 Ultraviolet-light sensitive mutants of Aspergillus nidulans. Mutat. Res. 9:579–587.PubMedGoogle Scholar
  480. Yoshimoto, A., T. Nakamura and R. Sato, 1961 A sulphite reductase from Aspergillus nidulans. J. Biochem. 50:553–554.PubMedGoogle Scholar
  481. Yoshimoto, A., T. Nakamura and R. Sato, 1967 Isolation from Aspergillus nidulans of a protein catalyzing the reduction of sulphite by reduced violagen dyes. J. Biochem. 62:756–766.PubMedGoogle Scholar
  482. Zaudy, G., 1969 The location of some multiple aromatic mutants in Aspergillus nidulans. Aspergillus Newsl. 10:22.Google Scholar
  483. Zonneveld, B. J. M., 1971 Biochemical analysis of the cell wall of Aspergillus nidulans. Biochim. Biophys. Acta 249:506–514.PubMedGoogle Scholar
  484. Zonneveld, B. J. M., 1972a A new type of enzyme, an exo-splitting α-1,3-glucanase from non-induced cultures of Aspergillus nidulans. Biochim. Biophys. Acta 258:541–547.PubMedGoogle Scholar
  485. Zonneveld, B. J. M., 1972b The significance of α-1:3-glucan of the cell wall and α-1:3-glucanase for cleistothecium development. Biochim. Biophys. Acta 273:174–184.PubMedGoogle Scholar
  486. Zonneveld, B. J. M., 1973 Inhibitory effect of 2-deoxyglucose on cell wall α-1, 3-glucan synthesis and cleistothecium development in Aspergillus nidulans. Develop. Biol. 34:1–8.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • A. John Clutterbuck
    • 1
  1. 1.Genetics DepartmentGlasgow UniversityGlasgowScotland

Personalised recommendations