Skip to main content

Strategies to Engineer Plants Resistant to Bacterial and Fungal Diseases

  • Chapter
Book cover Plant-Microbe Interactions

Part of the book series: Subcellular Biochemistry ((SCBI,volume 29))

Abstract

Fungal and bacterial diseases are major factors limiting crop production worldwide. Control of damage caused by microbial pathogens is mainly based on the application of agrochemicals, breeding for resistant varieties, and various crop husbandry strategies, such as crop rotation. The tremendous investment in the development and use of agrochemicals has to be understood as a clear indication that plant breeding has not been able to keep pace with the rapid evolution of pathogenicity in microorganisms and to match the efficiency and flexibility of phytopharmacy. For farmers, however, planting the “disease control principle” with the seed would represent a potentially attractive alternative, as such a process could reduce the costs and the level of technology required to grow a certain crop. In addition, the environment would be less burdened with potentially harmful compounds. Alltogether, these considerations stimulate plant breeders to look for new approaches of breeding disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, D., Goodman, R. M., Gut-Rella, M., Glascock, C., Weymann, K., Friedrich, L., Maddox, D., Ahl-Goy, P., Luntz, T., Ward, E., and Ryals, J., 1993, Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a, Proc. Natl. Acad. Sci. USA 90:7327–7331.

    Article  PubMed  CAS  Google Scholar 

  • Anzai, H., Yoneyama, K., and Yamaguchi, I., 1989, Transgenic tobacco resistant to a bacterial disease by the detoxification of a pathogenic toxin, Mol. Gen. Genet. 219:492–494.

    Article  CAS  Google Scholar 

  • Apostol, I., Heinstein, P. F., and Low, P. S., 1989, Rapid stimulation of an oxidative burst during elicitation of cultured plant cells, Plant Physiol. 90:109–116.

    Article  PubMed  CAS  Google Scholar 

  • Baker, C. J., and Orlandi, E. W., 1995, Active oxygen in plant/pathogen interactions, Annu. Rev. Phytopathol. 33:299–321.

    Article  PubMed  CAS  Google Scholar 

  • Baker, C. J., O’Neill, N. R., Keppler, L. D., and Orlandi, E. W., 1991, Early responses during plant-bacteria interactions in tobacco cell suspensions, Phytopathology 81:1504–1507.

    Article  Google Scholar 

  • Bevins, C. L., and Zasloff, M., 1990, Peptides from frog skin, Annu. Rev. Biochem. 59:395–414.

    Article  PubMed  CAS  Google Scholar 

  • Bi, Y. M., Kenton, P., Mur, L., Darby, R., and Draper, J., 1995, Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression, Plant J. 8:235–245.

    Article  PubMed  CAS  Google Scholar 

  • Bohlmann, H., 1994, The role of thionins in plant protection, Crit. Rev. Plant Sci. 13:1–16.

    CAS  Google Scholar 

  • Bol, J. F., Linthorst, H. J. M., and Cornelissen, B. J. C., 1990, Plant pathogenesis-related proteins induced by virus infection, Annu. Rev. Phytopathol. 28:113–138.

    Article  CAS  Google Scholar 

  • Boiler, T., 1987, Hydrolytic enzymes in plant disease resistance, in Plant-Microbe Interactions: Molecular and Genetic Perspectives, Vol. 2 (T. Kosuge and E. W. Nester, eds.), pp. 385–414, Macmillan, New York.

    Google Scholar 

  • Boman, H. G., and Hultmark, D., 1987, Cell-free immunity in insects, Annu. Rev. Microbiol. 41:103–126.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, D. J., Kjellbom, P., and Lamb, C. J., 1992, Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: A novel, rapid defense response, Cell 70:21–30.

    Article  PubMed  CAS  Google Scholar 

  • Brisson, L. F., Tenhaken, R., and Lamb, C. J., 1994, Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance, Plant Cell 6:1703–1712.

    PubMed  CAS  Google Scholar 

  • Broekaert, W. F., Mariën, W., Terras, F. R. G., de Bolle, M. F. C., Proost, P., van Damme, J., Dillen, L., Claeys, M., Rees, S. B., Vanderleyden, J., and Cammue, B. P. A., 1992, Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins, Biochemistry 31:4308–4314.

    Article  PubMed  CAS  Google Scholar 

  • Broekaert, W. F., Terras, F. R. G., Cammue, B. P. A., and Osborn, R. W., 1995, Plant defensins: Novel antimicrobial peptides as components of the host defense system, Plant Physiol. 108:1353–1358.

    Article  PubMed  CAS  Google Scholar 

  • Broekaert, W. F., Cammue, B. P. A., de Bolle, M. F. C., Thevissen, K., de Samblanx, G. W., and Osborn, R. W., 1997, Antimicrobial peptides from plants, Crit. Rev. Plant Sci. 16:297–323.

    CAS  Google Scholar 

  • Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C. J., and Broglie, R., 1991, Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani, Science 254:1194–1197.

    Article  PubMed  CAS  Google Scholar 

  • Cammue, B. P. A., Thevissen, K., Hendriks, M., Eggermont, K., Goderis, I. J., Proost, P., van Damme, J., Osborn, R. W., Geurbette, F., Kader, J. C., and Broekaert, W. F., 1995, A potent antimicrobial protein from onion (Allium cepa L.) seeds showing sequence homology to plant lipid transfer proteins, Plant Physiol. 109:445–455.

    Article  PubMed  CAS  Google Scholar 

  • Carmona, M. J., Molina, A., Fernandez, J. A., Lopez-Fando, J. J., and Garcia-Olmedo, F., 1993, Expression of the α-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens, Plant J. 3:457–462.

    Article  PubMed  CAS  Google Scholar 

  • Casteels, P., Romagnolo, J., Castle, M., Casteels-Josson, K., Erdjument-Bromage, H., and Tempst, P., 1994, Biodiversity of apidaecin-type peptide antibiotics, J. Biol. Chem. 269:26107–26115.

    PubMed  CAS  Google Scholar 

  • Chai, H. B., and Doke, N., 1987, Activation of the potential of potatoleaf tissue to react hypersensitively to Phytophthora infestans by cytospore germination fluid and the enhancement of this potential by calcium ions, Physiol. Mol. Plant Pathol. 30:27–37.

    Article  CAS  Google Scholar 

  • Chamnongpol, S., Willekens, H., Langebartels, C., van Montagu, M., Inzé, D., and van Camp, W., 1996, Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light, Plant J. 10:491–503.

    Article  CAS  Google Scholar 

  • Chen, Z., Silva, H., and Klessig, D. F., 1993, Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid, Science 162:1883–1886.

    Article  Google Scholar 

  • Collinge, D. B., Kragh, K. M., Mikkelsen, J. D., Nielsen, K. K., Rasmussen, U., and Vad, K., 1993, Plant chitinases, Plant J. 3:31–40.

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen, B. J. C., and Melchers, L. S., 1993, Strategies for control of fungal diseases with transgenic plants, Plant Physiol. 101:709–712.

    PubMed  CAS  Google Scholar 

  • Cutt, J. R., and Klessig, D. F., 1992, Pathogenesis-related proteins, in Genes Involved in Plant Defense (T. Boiler and F. Meins, eds.), pp. 209–243, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Dangl, J. L., 1995, Pièce de résistance: Novel classes of plant disease resistance genes, Cell 80:363–366.

    Article  PubMed  CAS  Google Scholar 

  • Davis, D., Merida, J., Legendre, L., and Low, P. S., 1993, Independent elicitation of the oxidative burst and phytoalexin formation in cultural plant cells, Phytochemistry 32:607–611.

    Article  CAS  Google Scholar 

  • De Block, M., 1993, The cell biology of plant transformation: Current state, problems, prospects and the implications for the plant breeding, Euphytica 71:1–14.

    Article  Google Scholar 

  • Degoussée, N., Triantaphylidés, C., and Montillet, J.-L., 1994, Involvement of oxidative processes in the signaling mechanisms leading to the activation of glyceollin synthesis in soybean (Glycine max), Plant Physiol 104:945–952.

    Google Scholar 

  • De la Fuente-Martinez, J. M., Mosqueda-Cano, G., Alvares-Morales, A., and Herrera-Estrella, L., 1992, Expression of a bacterial phaseolotoxin-resistant ornithyl transcarbamylase in transgenic tobacco confers resistance to Pseudomonas syringae pv. phaseolicola, Biotechnology 10:905–909.

    Article  PubMed  Google Scholar 

  • De la Fuente-Martinez, J. M., and Herrera-Estrella, L., 1993, Strategies to design transgenic plants resistant to toxins produced by pathogens, AgBiotech News Inf. 5:295N–299N.

    Google Scholar 

  • De Wit, P. J. G. M., 1992, Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens, Annu. Rev. Phytopathol. 30:391–418.

    Article  PubMed  Google Scholar 

  • Dong, X., 1995, Finding the missing pieces in the puzzle of plant disease resistance, Proc. Natl. Acad. Sci. USA 92:7137–7139.

    Article  PubMed  CAS  Google Scholar 

  • Düring, K., 1993, Can lysozymes mediate antibacterial resistance in plants, Plant Mol. Biol. 23:209–214.

    Article  PubMed  Google Scholar 

  • Düring, K., 1994, Differential patterns of bacteriolytic activities in potato in comparison of bacteriophage T4 and hen egg-white lysozymes, J. Phytopathol. 141:159–164.

    Article  Google Scholar 

  • Düring, K., Porsch, P., Fladung, M., and Lörz, H., 1993, Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora, Plant J. 3:587–598.

    Article  Google Scholar 

  • Endo, Y., Tsurugi, K., and Ebert, R. F., 1988. The mechanism of action of barley toxin: A type 1 ribosome-inactivating protein with RNA N-glycosidase activity, Biochem. Biophys. Acta 954:224–226.

    Article  PubMed  CAS  Google Scholar 

  • Finnegan, J., and McElroy, D., 1994, Transgene inactivation: Plants fight back! Biotechnology 12:883–888.

    Article  Google Scholar 

  • Flor, H. H., 1955, Host-parasite interaction in flax rust—Its genetics and other implications, Phytopathology 45:680–685.

    Google Scholar 

  • Flor, H. H., 1971, Current status of the gene-for-gene concept, Annu. Rev. Phytopathol. 9:275–298.

    Article  Google Scholar 

  • Florack, D. E. A., and Stiekema, W. J., 1994, Thionins: Properties, possible biological roles and mechanisms of action, Plant Mol. Biol. 26:25–37.

    Article  PubMed  CAS  Google Scholar 

  • Florack, D. E. A., Dirkse, W. G., Visser, B., Heidekamp, F., and Stiekema, W. J., 1994, Expression of biologically active hordothionins in tobacco: Effects of pre-and pro-sequences at the amino and carboxyl termini of the hordothionin precursor on mature protein expression and sorting, Plant Mol. Biol. 24:83–96.

    Article  PubMed  CAS  Google Scholar 

  • Florack, D., Allefs, S., Bollen, R., Bosch, D., Visser, B., and Stiekema, W., 1995, Expression of giant silkmoth cecropin B genes in tobacco, Transgenic Res. 4:132–141.

    Article  PubMed  CAS  Google Scholar 

  • Freialdenhoven, A., Scherag, B., Hollrichter, B., Collinge, D. B., Thordal-Christensen, H., and Schulze-Lefert, P., 1994, Nar-1 and Nar-2, two loci required for Mla 12-specified race-specific resistance to powdery mildew in barley, Plant Cell 6:983–994.

    PubMed  CAS  Google Scholar 

  • Ganz, T., and Lehrer, R. I., 1994, Defensins, Immunology 6:584–589.

    CAS  Google Scholar 

  • Garcia-Olmedo, F., Molina, A., Segura, A., and Moreno, M., 1995, The defensive role of nonspecific lipid-transfer proteins in plants, Trends Microbiol. 3:72–74.

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook, J., and Ausubel, F. M., 1994, Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens, Proc. Natl. Acad. Sci. USA 91:8955–8959.

    Article  PubMed  CAS  Google Scholar 

  • Glazener, J. A., Orlandi, E. W., Harmon, G. L., and Baker, C. J., 1991, An improved method for monitoring active oxygen in bacteria-treated suspension cells using luminol-dependent chemiluminescence, Physiol. Mol. Plant Pathol. 39:123–133.

    Article  CAS  Google Scholar 

  • Grison, R., Grezes-Besset, B., Schneider, M., Lucante, N., Olsen, L., Leguay, J.-J., and Toppan, A., 1996, Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene, Nature Biotechnol. 14:643–646.

    Article  CAS  Google Scholar 

  • Hain, R., Reif, H.-J., Krause, E., Langebartels, R., Kindl, H., Vornam, B., Wiese, W., Schmelzer, E., Schreier, P. H., Stöcker, R. H., and Stenzel, K., 1993, Disease resistance results from foreign phytoalexin expression in a novel plant, Nature 361:153–156.

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack, K. E., Harrison, K., and Jones, J. D. G., 1994a, Developmentally regulated cell death on expression of the fungal avirulence gene Avr9 in tomato seedlings carrying the disease-resistance gene Cf9, Proc. Natl. Acad. Sci. USA 91:10445–10449.

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack, K. E., Jones, D. A., and Jones, J. D. G., 1994b, Identification of two genes required in tomato for full Cf-9-dependent resistance to Cladosporium fulvum, Plant Cell 6:361–374.

    PubMed  CAS  Google Scholar 

  • Hammond-Kosack, K. E., Silverman, P., Raskin, I., and Jones, J. D. G., 1996, Race-specific elicitors of Cladosporium fulvum induce changes in cell morphology and the synthesis of ethylene and salicylic acid in tomato plants carrying the corresponding Cf disease resistance gene, Plant Physiol. 110:1381–1394.

    PubMed  CAS  Google Scholar 

  • Hartley, R. W., 1989, Barnase and barstar: Two small proteins to fold and fit together, Trends Biochem. Sci. 14:450–454.

    Article  PubMed  CAS  Google Scholar 

  • Hightower, R., Baden, C., Penzes, E., and Dunsmuir, P., 1994, The expression of cecropin peptide in transgenic tobacco does not confer resistance to Pseudomonas syringae pv. tabaci, Plant Cell Rep. 13:295–299.

    Article  CAS  Google Scholar 

  • Hoffmann, J. A., and Hétru, C., 1992, Insect defensins: Inducible antibacterial peptides, Immunology Today 13:411–415.

    Article  PubMed  CAS  Google Scholar 

  • Hultmark, D., Engström, A., Bennich, H., Kapur, R., and Boman, H. G., 1982, Insect immunity: Isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae, Eur. J. Biochem. 127:207–217.

    Article  PubMed  CAS  Google Scholar 

  • Jach, G., Görnhardt, B., Mundy, J., Logemann, J., Pinsdorf, E., Leah, R., Schell, J., and Maas, C., 1995, Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco, Plant J. 8:97–109.

    Article  PubMed  CAS  Google Scholar 

  • Jaynes, J. M., Xanthopoulos, K. G., Destéfano-Beltran, L., and Dodds, J. H., 1987, Increasing bacterial disease resistance utilising antibacterial genes from insects, BioEssays 6:263–270.

    Article  CAS  Google Scholar 

  • Jaynes, J. M., Nagpala, P., Destéfano-Beltran, L., Huang, J. H., Kim, J. H., Denny, T., and Cetiner, S., 1993, Expression of a cecropin B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solanacearum, Plant Sci. 89:43–53.

    Article  CAS  Google Scholar 

  • Johal, G. S., and Briggs, S. P., 1992, Reductase activity encoded by the Mh1 resistance gene in maize, Science 258:985–987.

    Article  PubMed  CAS  Google Scholar 

  • Klessig, D. F., and Malamy, J., 1994, The salicylic acid signal in plants, Plant Mol. Biol. 26:1439–1458.

    Article  PubMed  CAS  Google Scholar 

  • Koch, C., Noga, G., and Strittmatter, G., 1994, Photosynthetic electron transport is differentially affected during early stages of cultivar/race-specific interactions between potato and Phytophthora infestans, Planta 193:551–557.

    Article  CAS  Google Scholar 

  • Kombrink, E., and Somssich, I. E., 1995, Defense responses of plants to pathogens, Adv. Bot. Res. 21:1–34.

    Article  CAS  Google Scholar 

  • Kung, S., 1993, Introduction: From hybrid plants to transgenic plants, in Transgenic Plants, Vol. 1 (S. Kung and R. Wu, eds.), pp. 1–12, Academic Press, San Diego, California.

    Google Scholar 

  • Lamb, C. J., Lawton, M. A., Dron, M., and Dixon, R. A., 1989, Signals and transduction mechanisms for activation of plant defense against microbial attack, Cell 56:215–224.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, C. J., Ryals, J. A., Ward, E. R., and Dixon, R. A., 1992, Emerging strategies for enhancing crop resistance to microbial pathogens, Biotechnology 10:1436–1445.

    Article  PubMed  CAS  Google Scholar 

  • Langcake, P., and Pryce, R. J., 1977, The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation, Phytochemistry 16:1193–1196.

    Article  CAS  Google Scholar 

  • Lawton, K., Uknes, S., Friedrich, L., Gaffney, T., Alexander, D., Goodman, R., Metraux, J. P., Kessmann, H., Ahl-Goy, P., Gut-Rella, M., Ward, E., and Ryals, J., 1993, The molecular biology of systemic acquired resistance, in Mechanisms of Plant Defense Responses (B. Fritig and M. Legrand, eds.), pp. 422–432, Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Leah, R., Tommerup, H., Svendsen, I., and Mundy, J., 1991, Biochemical and molecular characterization of three barley seed proteins with antifungal properties, J. Biol. Chem. 266:1564–1573.

    PubMed  CAS  Google Scholar 

  • Lee, H. I., and Raikhel, N. V., 1995, Prohevein is poorly processed but shows enhanced resistance to a chitin-binding fungus in transgenic tomato plants, Braz. J. Med. Biol. Res. 28:743–750.

    PubMed  CAS  Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R., and Lamb, C. J., 1994, H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response, Cell 79:583–593.

    Article  PubMed  CAS  Google Scholar 

  • Lin, W., Anarutha, C. S., Datta, K., Potrykus, I., Muthukrishnan, S., and Datta, S. K., 1995, Genetic engineering of rice for resistance to sheath blight, Biotechnology 13:686–691.

    Article  CAS  Google Scholar 

  • Liu, D., Raghothama, K. G., Hasegawa, P. M., and Bressan, R. A., 1994, Osmotin overexpression in potato delays development of disease symptoms, Proc. Natl. Acad. Sci. USA 91:1888–1892.

    Article  PubMed  CAS  Google Scholar 

  • Logemann, J., Jach, G., Tommerup, H., Mundy, J., and Schell, J., 1992, Expression of a barley ribosome-inactivating protein leads to increased fungal protection in transgenic tobacco plants, Biotechnology 10:305–308.

    Article  CAS  Google Scholar 

  • Logemann, J., Jach, G., Logemann, S., Leah, R., Wolf, G., Mundy, J., Oppenheim, A., Chet, I., and Schell, J., 1993, Expression of a ribosome inhibiting protein (RIP) or a bacterial chitinase leads to fungal resistance in transgenic plants, in Mechanisms of Plant Defense Responses (B. Fritig and M. Legrand, eds.), pp. 446–448, Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Lotan, T., Ori, N., and Fluhr, R., 1989, Pathogenesis-related proteins are developmentally regulated in tobacco flowers, Plant Cell 1:881–887.

    PubMed  CAS  Google Scholar 

  • Majeau, N., Trudel, J., and Asselin, A., 1990, Diversity of cucumber chitinase isoforms and characterisation of one seed basic chitinase with lysozyme activity, Plant Sci. 68:9–16.

    Article  CAS  Google Scholar 

  • Mariani, C., de Beukeleer, M., Truettner, J., Leemans, J., and Goldberg, R. B., 1990, Induction of male sterility in plants by a chimaeric ribonuclease gene, Nature 347:737–741.

    Article  CAS  Google Scholar 

  • Mariani, C., Gossele, V., de Beukeleer, M., de Block, M., Goldberg, R. B., de Greef, W., and Leemans, J., 1992, A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants, Nature 357:384–387.

    Article  CAS  Google Scholar 

  • Martini, N., Egen, M., Rüntz, I., and Strittmatter, G., 1993, Promoter sequences of a potato pathogenesis-related gene mediate transcriptional activation selectively upon fungal infection, Mol. Gen. Genet. 236:179–186.

    Article  PubMed  CAS  Google Scholar 

  • Mauch, F., Mauch-Mani, B., and Boiler, T., 1988, Antifungal hydrolases in pea tissue, Plant Physiol. 88:936–942.

    Article  PubMed  CAS  Google Scholar 

  • May, M. J., Hammond-Kosack, K. E., and Jones, J. D. G., 1996, Involvement of reactive oxygen species, glutathione metabolism, and lipid peroxidation in the Cf-dependent defense response of tomato cotyledons induced by race-specific elicitors of Cladosporium fulvum, Plant Physiol. 110:1367–1379.

    PubMed  CAS  Google Scholar 

  • Meeley, R. B., Johal, G. S., Briggs, S. P., and Walton, J. D., 1992, A biochemical phenotype for a disease resistance gene of maize, Plant Cell 4:71–77.

    PubMed  CAS  Google Scholar 

  • Mehdy, M. C., 1994, Active oxygen species in plant defense against pathogens, Plant Physiol. 105:467–472.

    PubMed  CAS  Google Scholar 

  • Meins, F., Neuhaus, J.-M., Sperisen, C., and Ryals, J., 1992, The primary structure of plant pathogenesis-related glucanohydrolases and their genes, in Genes Involved in Plant Defense (T. Boiler and F. Meins, eds.), pp. 245–282, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Melchers, L. S., Apotheker-de Groot, M., van der Knaap, J. A., Ponstein, A. S., Sela-Buurlage, M. A., Bol, J. F., Cornelissen, B. J. C., van den Elzen, P. J. M., and Linthorst, H. J. M., 1994, A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity, Plant J. 5:469–480.

    Article  PubMed  CAS  Google Scholar 

  • Melchior, F., and Kindl, H., 1991, Arch. Biochem. Biophys. 288:552–557.

    Article  PubMed  CAS  Google Scholar 

  • Memelink, J., Linthorst, H. J. M., Schilperoort, R. A., and Hoge, H. C., 1990, Tobacco genes encoding acidic and basic pathogenesis-related proteins display different expression patterns, Plant Mol. Biol. 14:119–126.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, P., 1995, Gene Silencing in Higher Plants and Related Phenomena in Other Eukaryotes, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Michelmore, R., 1995, Molecular approaches to manipulation of disease resistance genes, Annu. Rev. Phytopathol. 15:393–427.

    Article  Google Scholar 

  • Mikkelsen, J. D., Berglund, L., Nielsen, K. K., Christiansen, H., and Bojsen, K., 1992, Structure of endochitinase genes from sugar beets, in Advances in Chitin and Chitosan (C. J. Brine, P. A. Sandford, and J. P. Zikakis, eds.), pp. 344–353, Elsevier Science Publishers, London.

    Chapter  Google Scholar 

  • Mitchell, R. E., 1984, The relevance of non-host specific toxins in the expression of virulence by pathogens, Annu Rev. Phytopathol. 22:215–245.

    Article  CAS  Google Scholar 

  • Molina, A., Segura, A., and Garcia-Olmedo, F., 1993, Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens, FEBS 316:119–122.

    Article  CAS  Google Scholar 

  • Moreno, M., Segura, A., and Garcia-Olmedo, F., 1994, Pseudothionin-St1, a potato peptide active against potato pathogen, Eur. J. Biochem. 223:135–139.

    Article  PubMed  CAS  Google Scholar 

  • Mosqueda, G., van den Broek, G., Saucedo, O., Bailey, A. M., Alvarez-Morales, A., and Herrera-Estrella, L., 1990, Isolation and characterisation of the gene from Pseudomonas syringae pv. phaseolicola encoding the phaseolotoxin-insensitive ornithine carbamoyltransferase, Mol. Gen. Genet. 222:461–466.

    Article  PubMed  CAS  Google Scholar 

  • Neale, A. D., Wahleithner, J. A., Lund, M., Bonnett, H. T., Kelly, A., Meeks-Wagner, D. R., Peacock, W. J., and Dennis, E. S., 1990, Chitinase, β-1,3-glucanase, osmotin and extensin are expressed in tobacco expiants during flower formation, Plant Cell 2:673–684.

    PubMed  CAS  Google Scholar 

  • Neuenschwander, U., Vernooij, B., Friedrich, L., Uknes, S., Kessmann, H., and Ryals, J., 1995, Is hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance? Plant J. 8:227–233.

    Article  CAS  Google Scholar 

  • Nicholson, R. L., and Hammerschmid, R., 1982, Phenolic compounds and their role in disease resistance, Annu. Rev. Phytopathol. 30:369–389.

    Article  Google Scholar 

  • Rao, A. G., 1995, Antimicrobial peptides, Mol. Plant-Microbe Interact. 8:6–13.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, W. K., and Selitrennikoff, C. P., 1986, Isolation and partial characterization of two antifungal proteins from barley, Biochim. Biophys. Acta 880:161–170.

    Article  PubMed  CAS  Google Scholar 

  • Samac, D. A., Hironoka, C. M., Yallay, P. E., and Shah, D. M., 1990, Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana, Plant Physiol. 93:907–914.

    Article  PubMed  CAS  Google Scholar 

  • Schäfer, W., Straney, D., Ciuffetti, L., VanEtten, H. D., and Yoder, O. C., 1989, One enzyme makes a fungal pathogen, but not a saprophyte, virulent on a new host plant, Science 246:247–249.

    Article  PubMed  Google Scholar 

  • Sela-Buurlage, M. B., Ponstein, A. S., Bres-Vloemans, S. A., Melchers, L. S., van den Elzen, P. J. M., and Cornelissen, B. J. C., 1993, Only specific tobacco (Nicotiana tabacum) chitinases and β-1,3-glucanases exhibit antifungal activity, Plant Physiol. 101:857–863.

    PubMed  CAS  Google Scholar 

  • Shah, D. M., Rommens, C. M. T., and Beachy, R. N., 1995, Resistance to diseases and insects in transgenic plants: Progress and applications to agriculture, TIBTECK 13:362–368.

    Article  CAS  Google Scholar 

  • Siebertz, B., Logemann, J., Willmitzer, L., and Schell, J., 1989, Cis-analysis of the wound-inducible promoter wun1 in transgenic tobacco plants and histochemical localization of its expression, Plant Cell 1:961–968.

    PubMed  CAS  Google Scholar 

  • Staskawicz, B. J., Panopoulos, N. J., and Hoogenraad, N. J., 1980, Phytotoxin-insensitive ornithine carbamoyltransferase of Pseudomonas syringae pv. phaseolicola. Basis for immunity to phaseolotoxin, J. Bacteriol. 142:720–723.

    PubMed  CAS  Google Scholar 

  • Staskawicz, B. J., Ausubel, F. M., Baker, B. J., Ellis, J. G., and Jones, J. D. G., 1995, Molecular genetics of plant disease resistance, Science 268:661–667.

    Article  PubMed  CAS  Google Scholar 

  • Stein, U., and Blaich, R., 1985, Untersuchungen über Stilbenproduktion und Botrytisanfälligkeit bei Vitis-Arten, Vitis 24:75–87.

    Google Scholar 

  • Stintzi, A., Geoffroy, D., Bersuder, D., Fritig, B., and Legrand, M., 1993a, cDNA cloning and expression studies of tobacco class III chitinases-lysozymes, in Developments in Plant Pathology, Vol. 2 (B. Fritig and M. Legrand, eds.), pp. 312–315, Kluwer, Dordrecht, The Netherlands.

    Google Scholar 

  • Stintzi, A., Heitz, T., Prasad, V., Wiedemann-Merdinoglu, S., Kauffmann, S., Geoffroy, P., Legrand, M., and Fritig, B., 1993b, Plant ‘pathogenesis-related’ proteins and their role in defense against pathogens, Biochimie 75:687–706.

    Article  PubMed  CAS  Google Scholar 

  • Stirpe, F., and Hughes, R. C., 1989, Specificity of ribosome inactivating proteins with RNA N-glycosidase activity, Biochem. J. 262:1001–1002.

    PubMed  CAS  Google Scholar 

  • Stirpe, F., Barbieri, L., Batelli, M. G., Soria, M., and Lappi, D. A., 1992, Ribosome-inactivating proteins from plants: Present status and future prospects, Biotechnology 10:405–412.

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter, G., Janssens, J., Opsomer, C., and Botterman, J., 1995, Inhibition of fungal disease development in plants by engineering controlled cell death, Biotechnology 13:1085–1089.

    Article  CAS  Google Scholar 

  • Strittmatter, G., Gheysen, G., Gianinazzi-Pearson, V., Hahn, K., Niebel, A., Rohde, W., and Tacke, E., 1996, Infections with various types of organisms stimulate transcription from a short promoter fragment of the potato gst1 gene, Mol. Plant-Microbe Interact. 9:68–73.

    Article  PubMed  CAS  Google Scholar 

  • Terras, F. R. G., Schoofs, H. M. E., de Bolle, M. F. C., van Leuven, F., Rees, S. B., Vanderleyden, J., Cammue, B. P. A., and Broekaert, W. F., 1992, Analysis of two novel classes of antifungal proteins from radish (Raphanus sativus L.) seeds, J. Biol. Chem. 267:15301–15309.

    PubMed  CAS  Google Scholar 

  • Terras, F. R. G., Eggermont, K., Kovaleva, V., Raikhel, N. V., Osborn, R. W., Kester, A., Rees, S. B., Torrekens, S., van Leuven, F., Vanderleyden, J., Cammue, B. P. A., and Broekaert, W. F., 1995, Small cysteine-rich antifungal proteins from radish: Their role in host defense, Plant Cell 7:573–588.

    PubMed  CAS  Google Scholar 

  • Toyoda, H., Matsuda, Y., Yamaga, T., Ikeda, S., Morita, M., Tamai, T., and Ouchi, S., 1991, Suppression of the powdery mildew pathogen by chitinase microinjected into barley coleoptile epidermal cells, Plant Cell Rep. 10:217–220.

    CAS  Google Scholar 

  • Trudel, J., Audy, P., and Asselin, A., 1989, Electrophoretic forms of chitinase activity in Xanthi-nc tobacco, healthy and infected with tobacco mosaic virus, Mol. Plant-Microbe Interact. 2:315–324.

    Article  Google Scholar 

  • Trudel, J., Potvin, C., and Asselin, A., 1992, Expression of active hen egg-white lysozyme in transgenic tobacco, Plant Sci. 87:55–67.

    Article  CAS  Google Scholar 

  • Trudel, J., Potvin, C., and Asselin, A., 1995, Secreted hen lysozyme in transgenic tobacco: Recovery of bound enzyme and in vitro growth inhibition of plant pathogens, Plant Sci. 106:55–62.

    Article  CAS  Google Scholar 

  • VanEtten, H. D., Matthews, D. E., and Matthews, P. S., 1989, Phytoalexin detoxification: Importance for pathogenicity and practical implications, Annu. Rev. Phytopathol. 27:143–164.

    Article  PubMed  CAS  Google Scholar 

  • Vierheilig, H., Alt, M., Neuhaus, J.-M., Boller, T., and Wiemken, A., 1993, Colonization of transgenic N. sylvestris plants, expressing different forms of N. tabacum chitinase, by the root pathogen Rhizotonia solani and by the mycorrhizal symbiont Glomus mosseae, Mol. Plant-Microbe Interact. 6:261–264.

    Article  CAS  Google Scholar 

  • Vornam, B., Schön, H., and Kindl, H., 1988, Control of gene expression during induction of cultured peanut cells: mRNA levels, protein synthesis and enzyme activity of stilbene synthase, Plant Mol. Biol. 10:235–243.

    Article  CAS  Google Scholar 

  • Ward, E. R., Payne, G. B., Mover, M. B., Williams, S. C., Dincher, S. S., Sharkey, K. C., Beck, J. H., Taylor, H. T., Ahl-Goy, P., Meins, F., and Ryals, J. A., 1991a, Differential regulation of β-1,3-glucanase messenger RNAs in response to pathogen infection, Plant Physiol. 96:390–397.

    Article  PubMed  CAS  Google Scholar 

  • Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D. C., Ahl-Goy, P., Metraux, J. P., and Ryals, J. A., 1991b, Plant Cell 3:1085–1094.

    PubMed  CAS  Google Scholar 

  • Weltring, K.-M., Turgeon, B. G., Yoder, O. C., and VanEtten, H. D., 1988, Isolation of a phytoalexin-detoxification gene from the plant pathogenic fungus Nectria haematococca by detecting its expression in Aspergillus nidulans, Gene 68:335–344.

    Article  PubMed  CAS  Google Scholar 

  • Wessels, J. G. H., and Sietsma, J. H., 1981, Fungal cell walls: A survey, in Encyclopedia of Plant Physiology, New Series, Vol. 13B (W. Tanner and F. A. Loewus, eds.), pp. 352–394, Springer-Verlag, Berlin.

    Google Scholar 

  • Woodward, S., and Pearce, R. B., 1988, The role of stilbenes in resistance of Sitka spruce (Picea sitchensis (Bong.) Carr.) to entry of fungal pathogens, Physiol. Mol. Plant Pathol. 33:127–149.

    Article  CAS  Google Scholar 

  • Wu, G., Shortt, B. J., Lawrence, E. B., Levine, E. B., Fitzsimmons, K. C., and Shah, D. M., 1995, Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants, Plant Cell 7:1357–1368.

    PubMed  CAS  Google Scholar 

  • Zhu, Q., Maher, E. A., Masoud, S., Dixon, R. A., and Lamb, C. J., 1994, Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco, Biotechnology 12:807–812.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Strittmatter, G., Goethals, K., Van Montagu, M. (1998). Strategies to Engineer Plants Resistant to Bacterial and Fungal Diseases. In: Biswas, B.B., Das, H.K. (eds) Plant-Microbe Interactions. Subcellular Biochemistry, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1707-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1707-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1709-6

  • Online ISBN: 978-1-4899-1707-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics