Strategies to Engineer Plants Resistant to Bacterial and Fungal Diseases

  • Günter Strittmatter
  • Koen Goethals
  • Marc Van Montagu
Part of the Subcellular Biochemistry book series (SCBI, volume 29)


Fungal and bacterial diseases are major factors limiting crop production worldwide. Control of damage caused by microbial pathogens is mainly based on the application of agrochemicals, breeding for resistant varieties, and various crop husbandry strategies, such as crop rotation. The tremendous investment in the development and use of agrochemicals has to be understood as a clear indication that plant breeding has not been able to keep pace with the rapid evolution of pathogenicity in microorganisms and to match the efficiency and flexibility of phytopharmacy. For farmers, however, planting the “disease control principle” with the seed would represent a potentially attractive alternative, as such a process could reduce the costs and the level of technology required to grow a certain crop. In addition, the environment would be less burdened with potentially harmful compounds. Alltogether, these considerations stimulate plant breeders to look for new approaches of breeding disease resistance.


Transgenic Plant Transgenic Tobacco Transgenic Tobacco Plant Fungal Disease Lysozyme Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, D., Goodman, R. M., Gut-Rella, M., Glascock, C., Weymann, K., Friedrich, L., Maddox, D., Ahl-Goy, P., Luntz, T., Ward, E., and Ryals, J., 1993, Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a, Proc. Natl. Acad. Sci. USA 90:7327–7331.PubMedCrossRefGoogle Scholar
  2. Anzai, H., Yoneyama, K., and Yamaguchi, I., 1989, Transgenic tobacco resistant to a bacterial disease by the detoxification of a pathogenic toxin, Mol. Gen. Genet. 219:492–494.CrossRefGoogle Scholar
  3. Apostol, I., Heinstein, P. F., and Low, P. S., 1989, Rapid stimulation of an oxidative burst during elicitation of cultured plant cells, Plant Physiol. 90:109–116.PubMedCrossRefGoogle Scholar
  4. Baker, C. J., and Orlandi, E. W., 1995, Active oxygen in plant/pathogen interactions, Annu. Rev. Phytopathol. 33:299–321.PubMedCrossRefGoogle Scholar
  5. Baker, C. J., O’Neill, N. R., Keppler, L. D., and Orlandi, E. W., 1991, Early responses during plant-bacteria interactions in tobacco cell suspensions, Phytopathology 81:1504–1507.CrossRefGoogle Scholar
  6. Bevins, C. L., and Zasloff, M., 1990, Peptides from frog skin, Annu. Rev. Biochem. 59:395–414.PubMedCrossRefGoogle Scholar
  7. Bi, Y. M., Kenton, P., Mur, L., Darby, R., and Draper, J., 1995, Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression, Plant J. 8:235–245.PubMedCrossRefGoogle Scholar
  8. Bohlmann, H., 1994, The role of thionins in plant protection, Crit. Rev. Plant Sci. 13:1–16.Google Scholar
  9. Bol, J. F., Linthorst, H. J. M., and Cornelissen, B. J. C., 1990, Plant pathogenesis-related proteins induced by virus infection, Annu. Rev. Phytopathol. 28:113–138.CrossRefGoogle Scholar
  10. Boiler, T., 1987, Hydrolytic enzymes in plant disease resistance, in Plant-Microbe Interactions: Molecular and Genetic Perspectives, Vol. 2 (T. Kosuge and E. W. Nester, eds.), pp. 385–414, Macmillan, New York.Google Scholar
  11. Boman, H. G., and Hultmark, D., 1987, Cell-free immunity in insects, Annu. Rev. Microbiol. 41:103–126.PubMedCrossRefGoogle Scholar
  12. Bradley, D. J., Kjellbom, P., and Lamb, C. J., 1992, Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: A novel, rapid defense response, Cell 70:21–30.PubMedCrossRefGoogle Scholar
  13. Brisson, L. F., Tenhaken, R., and Lamb, C. J., 1994, Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance, Plant Cell 6:1703–1712.PubMedGoogle Scholar
  14. Broekaert, W. F., Mariën, W., Terras, F. R. G., de Bolle, M. F. C., Proost, P., van Damme, J., Dillen, L., Claeys, M., Rees, S. B., Vanderleyden, J., and Cammue, B. P. A., 1992, Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins, Biochemistry 31:4308–4314.PubMedCrossRefGoogle Scholar
  15. Broekaert, W. F., Terras, F. R. G., Cammue, B. P. A., and Osborn, R. W., 1995, Plant defensins: Novel antimicrobial peptides as components of the host defense system, Plant Physiol. 108:1353–1358.PubMedCrossRefGoogle Scholar
  16. Broekaert, W. F., Cammue, B. P. A., de Bolle, M. F. C., Thevissen, K., de Samblanx, G. W., and Osborn, R. W., 1997, Antimicrobial peptides from plants, Crit. Rev. Plant Sci. 16:297–323.Google Scholar
  17. Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C. J., and Broglie, R., 1991, Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani, Science 254:1194–1197.PubMedCrossRefGoogle Scholar
  18. Cammue, B. P. A., Thevissen, K., Hendriks, M., Eggermont, K., Goderis, I. J., Proost, P., van Damme, J., Osborn, R. W., Geurbette, F., Kader, J. C., and Broekaert, W. F., 1995, A potent antimicrobial protein from onion (Allium cepa L.) seeds showing sequence homology to plant lipid transfer proteins, Plant Physiol. 109:445–455.PubMedCrossRefGoogle Scholar
  19. Carmona, M. J., Molina, A., Fernandez, J. A., Lopez-Fando, J. J., and Garcia-Olmedo, F., 1993, Expression of the α-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens, Plant J. 3:457–462.PubMedCrossRefGoogle Scholar
  20. Casteels, P., Romagnolo, J., Castle, M., Casteels-Josson, K., Erdjument-Bromage, H., and Tempst, P., 1994, Biodiversity of apidaecin-type peptide antibiotics, J. Biol. Chem. 269:26107–26115.PubMedGoogle Scholar
  21. Chai, H. B., and Doke, N., 1987, Activation of the potential of potatoleaf tissue to react hypersensitively to Phytophthora infestans by cytospore germination fluid and the enhancement of this potential by calcium ions, Physiol. Mol. Plant Pathol. 30:27–37.CrossRefGoogle Scholar
  22. Chamnongpol, S., Willekens, H., Langebartels, C., van Montagu, M., Inzé, D., and van Camp, W., 1996, Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light, Plant J. 10:491–503.CrossRefGoogle Scholar
  23. Chen, Z., Silva, H., and Klessig, D. F., 1993, Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid, Science 162:1883–1886.CrossRefGoogle Scholar
  24. Collinge, D. B., Kragh, K. M., Mikkelsen, J. D., Nielsen, K. K., Rasmussen, U., and Vad, K., 1993, Plant chitinases, Plant J. 3:31–40.PubMedCrossRefGoogle Scholar
  25. Cornelissen, B. J. C., and Melchers, L. S., 1993, Strategies for control of fungal diseases with transgenic plants, Plant Physiol. 101:709–712.PubMedGoogle Scholar
  26. Cutt, J. R., and Klessig, D. F., 1992, Pathogenesis-related proteins, in Genes Involved in Plant Defense (T. Boiler and F. Meins, eds.), pp. 209–243, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  27. Dangl, J. L., 1995, Pièce de résistance: Novel classes of plant disease resistance genes, Cell 80:363–366.PubMedCrossRefGoogle Scholar
  28. Davis, D., Merida, J., Legendre, L., and Low, P. S., 1993, Independent elicitation of the oxidative burst and phytoalexin formation in cultural plant cells, Phytochemistry 32:607–611.CrossRefGoogle Scholar
  29. De Block, M., 1993, The cell biology of plant transformation: Current state, problems, prospects and the implications for the plant breeding, Euphytica 71:1–14.CrossRefGoogle Scholar
  30. Degoussée, N., Triantaphylidés, C., and Montillet, J.-L., 1994, Involvement of oxidative processes in the signaling mechanisms leading to the activation of glyceollin synthesis in soybean (Glycine max), Plant Physiol 104:945–952.Google Scholar
  31. De la Fuente-Martinez, J. M., Mosqueda-Cano, G., Alvares-Morales, A., and Herrera-Estrella, L., 1992, Expression of a bacterial phaseolotoxin-resistant ornithyl transcarbamylase in transgenic tobacco confers resistance to Pseudomonas syringae pv. phaseolicola, Biotechnology 10:905–909.PubMedCrossRefGoogle Scholar
  32. De la Fuente-Martinez, J. M., and Herrera-Estrella, L., 1993, Strategies to design transgenic plants resistant to toxins produced by pathogens, AgBiotech News Inf. 5:295N–299N.Google Scholar
  33. De Wit, P. J. G. M., 1992, Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens, Annu. Rev. Phytopathol. 30:391–418.PubMedCrossRefGoogle Scholar
  34. Dong, X., 1995, Finding the missing pieces in the puzzle of plant disease resistance, Proc. Natl. Acad. Sci. USA 92:7137–7139.PubMedCrossRefGoogle Scholar
  35. Düring, K., 1993, Can lysozymes mediate antibacterial resistance in plants, Plant Mol. Biol. 23:209–214.PubMedCrossRefGoogle Scholar
  36. Düring, K., 1994, Differential patterns of bacteriolytic activities in potato in comparison of bacteriophage T4 and hen egg-white lysozymes, J. Phytopathol. 141:159–164.CrossRefGoogle Scholar
  37. Düring, K., Porsch, P., Fladung, M., and Lörz, H., 1993, Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora, Plant J. 3:587–598.CrossRefGoogle Scholar
  38. Endo, Y., Tsurugi, K., and Ebert, R. F., 1988. The mechanism of action of barley toxin: A type 1 ribosome-inactivating protein with RNA N-glycosidase activity, Biochem. Biophys. Acta 954:224–226.PubMedCrossRefGoogle Scholar
  39. Finnegan, J., and McElroy, D., 1994, Transgene inactivation: Plants fight back! Biotechnology 12:883–888.CrossRefGoogle Scholar
  40. Flor, H. H., 1955, Host-parasite interaction in flax rust—Its genetics and other implications, Phytopathology 45:680–685.Google Scholar
  41. Flor, H. H., 1971, Current status of the gene-for-gene concept, Annu. Rev. Phytopathol. 9:275–298.CrossRefGoogle Scholar
  42. Florack, D. E. A., and Stiekema, W. J., 1994, Thionins: Properties, possible biological roles and mechanisms of action, Plant Mol. Biol. 26:25–37.PubMedCrossRefGoogle Scholar
  43. Florack, D. E. A., Dirkse, W. G., Visser, B., Heidekamp, F., and Stiekema, W. J., 1994, Expression of biologically active hordothionins in tobacco: Effects of pre-and pro-sequences at the amino and carboxyl termini of the hordothionin precursor on mature protein expression and sorting, Plant Mol. Biol. 24:83–96.PubMedCrossRefGoogle Scholar
  44. Florack, D., Allefs, S., Bollen, R., Bosch, D., Visser, B., and Stiekema, W., 1995, Expression of giant silkmoth cecropin B genes in tobacco, Transgenic Res. 4:132–141.PubMedCrossRefGoogle Scholar
  45. Freialdenhoven, A., Scherag, B., Hollrichter, B., Collinge, D. B., Thordal-Christensen, H., and Schulze-Lefert, P., 1994, Nar-1 and Nar-2, two loci required for Mla 12-specified race-specific resistance to powdery mildew in barley, Plant Cell 6:983–994.PubMedGoogle Scholar
  46. Ganz, T., and Lehrer, R. I., 1994, Defensins, Immunology 6:584–589.Google Scholar
  47. Garcia-Olmedo, F., Molina, A., Segura, A., and Moreno, M., 1995, The defensive role of nonspecific lipid-transfer proteins in plants, Trends Microbiol. 3:72–74.PubMedCrossRefGoogle Scholar
  48. Glazebrook, J., and Ausubel, F. M., 1994, Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens, Proc. Natl. Acad. Sci. USA 91:8955–8959.PubMedCrossRefGoogle Scholar
  49. Glazener, J. A., Orlandi, E. W., Harmon, G. L., and Baker, C. J., 1991, An improved method for monitoring active oxygen in bacteria-treated suspension cells using luminol-dependent chemiluminescence, Physiol. Mol. Plant Pathol. 39:123–133.CrossRefGoogle Scholar
  50. Grison, R., Grezes-Besset, B., Schneider, M., Lucante, N., Olsen, L., Leguay, J.-J., and Toppan, A., 1996, Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene, Nature Biotechnol. 14:643–646.CrossRefGoogle Scholar
  51. Hain, R., Reif, H.-J., Krause, E., Langebartels, R., Kindl, H., Vornam, B., Wiese, W., Schmelzer, E., Schreier, P. H., Stöcker, R. H., and Stenzel, K., 1993, Disease resistance results from foreign phytoalexin expression in a novel plant, Nature 361:153–156.PubMedCrossRefGoogle Scholar
  52. Hammond-Kosack, K. E., Harrison, K., and Jones, J. D. G., 1994a, Developmentally regulated cell death on expression of the fungal avirulence gene Avr9 in tomato seedlings carrying the disease-resistance gene Cf9, Proc. Natl. Acad. Sci. USA 91:10445–10449.PubMedCrossRefGoogle Scholar
  53. Hammond-Kosack, K. E., Jones, D. A., and Jones, J. D. G., 1994b, Identification of two genes required in tomato for full Cf-9-dependent resistance to Cladosporium fulvum, Plant Cell 6:361–374.PubMedGoogle Scholar
  54. Hammond-Kosack, K. E., Silverman, P., Raskin, I., and Jones, J. D. G., 1996, Race-specific elicitors of Cladosporium fulvum induce changes in cell morphology and the synthesis of ethylene and salicylic acid in tomato plants carrying the corresponding Cf disease resistance gene, Plant Physiol. 110:1381–1394.PubMedGoogle Scholar
  55. Hartley, R. W., 1989, Barnase and barstar: Two small proteins to fold and fit together, Trends Biochem. Sci. 14:450–454.PubMedCrossRefGoogle Scholar
  56. Hightower, R., Baden, C., Penzes, E., and Dunsmuir, P., 1994, The expression of cecropin peptide in transgenic tobacco does not confer resistance to Pseudomonas syringae pv. tabaci, Plant Cell Rep. 13:295–299.CrossRefGoogle Scholar
  57. Hoffmann, J. A., and Hétru, C., 1992, Insect defensins: Inducible antibacterial peptides, Immunology Today 13:411–415.PubMedCrossRefGoogle Scholar
  58. Hultmark, D., Engström, A., Bennich, H., Kapur, R., and Boman, H. G., 1982, Insect immunity: Isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae, Eur. J. Biochem. 127:207–217.PubMedCrossRefGoogle Scholar
  59. Jach, G., Görnhardt, B., Mundy, J., Logemann, J., Pinsdorf, E., Leah, R., Schell, J., and Maas, C., 1995, Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco, Plant J. 8:97–109.PubMedCrossRefGoogle Scholar
  60. Jaynes, J. M., Xanthopoulos, K. G., Destéfano-Beltran, L., and Dodds, J. H., 1987, Increasing bacterial disease resistance utilising antibacterial genes from insects, BioEssays 6:263–270.CrossRefGoogle Scholar
  61. Jaynes, J. M., Nagpala, P., Destéfano-Beltran, L., Huang, J. H., Kim, J. H., Denny, T., and Cetiner, S., 1993, Expression of a cecropin B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solanacearum, Plant Sci. 89:43–53.CrossRefGoogle Scholar
  62. Johal, G. S., and Briggs, S. P., 1992, Reductase activity encoded by the Mh1 resistance gene in maize, Science 258:985–987.PubMedCrossRefGoogle Scholar
  63. Klessig, D. F., and Malamy, J., 1994, The salicylic acid signal in plants, Plant Mol. Biol. 26:1439–1458.PubMedCrossRefGoogle Scholar
  64. Koch, C., Noga, G., and Strittmatter, G., 1994, Photosynthetic electron transport is differentially affected during early stages of cultivar/race-specific interactions between potato and Phytophthora infestans, Planta 193:551–557.CrossRefGoogle Scholar
  65. Kombrink, E., and Somssich, I. E., 1995, Defense responses of plants to pathogens, Adv. Bot. Res. 21:1–34.CrossRefGoogle Scholar
  66. Kung, S., 1993, Introduction: From hybrid plants to transgenic plants, in Transgenic Plants, Vol. 1 (S. Kung and R. Wu, eds.), pp. 1–12, Academic Press, San Diego, California.Google Scholar
  67. Lamb, C. J., Lawton, M. A., Dron, M., and Dixon, R. A., 1989, Signals and transduction mechanisms for activation of plant defense against microbial attack, Cell 56:215–224.PubMedCrossRefGoogle Scholar
  68. Lamb, C. J., Ryals, J. A., Ward, E. R., and Dixon, R. A., 1992, Emerging strategies for enhancing crop resistance to microbial pathogens, Biotechnology 10:1436–1445.PubMedCrossRefGoogle Scholar
  69. Langcake, P., and Pryce, R. J., 1977, The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation, Phytochemistry 16:1193–1196.CrossRefGoogle Scholar
  70. Lawton, K., Uknes, S., Friedrich, L., Gaffney, T., Alexander, D., Goodman, R., Metraux, J. P., Kessmann, H., Ahl-Goy, P., Gut-Rella, M., Ward, E., and Ryals, J., 1993, The molecular biology of systemic acquired resistance, in Mechanisms of Plant Defense Responses (B. Fritig and M. Legrand, eds.), pp. 422–432, Kluwer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  71. Leah, R., Tommerup, H., Svendsen, I., and Mundy, J., 1991, Biochemical and molecular characterization of three barley seed proteins with antifungal properties, J. Biol. Chem. 266:1564–1573.PubMedGoogle Scholar
  72. Lee, H. I., and Raikhel, N. V., 1995, Prohevein is poorly processed but shows enhanced resistance to a chitin-binding fungus in transgenic tomato plants, Braz. J. Med. Biol. Res. 28:743–750.PubMedGoogle Scholar
  73. Levine, A., Tenhaken, R., Dixon, R., and Lamb, C. J., 1994, H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response, Cell 79:583–593.PubMedCrossRefGoogle Scholar
  74. Lin, W., Anarutha, C. S., Datta, K., Potrykus, I., Muthukrishnan, S., and Datta, S. K., 1995, Genetic engineering of rice for resistance to sheath blight, Biotechnology 13:686–691.CrossRefGoogle Scholar
  75. Liu, D., Raghothama, K. G., Hasegawa, P. M., and Bressan, R. A., 1994, Osmotin overexpression in potato delays development of disease symptoms, Proc. Natl. Acad. Sci. USA 91:1888–1892.PubMedCrossRefGoogle Scholar
  76. Logemann, J., Jach, G., Tommerup, H., Mundy, J., and Schell, J., 1992, Expression of a barley ribosome-inactivating protein leads to increased fungal protection in transgenic tobacco plants, Biotechnology 10:305–308.CrossRefGoogle Scholar
  77. Logemann, J., Jach, G., Logemann, S., Leah, R., Wolf, G., Mundy, J., Oppenheim, A., Chet, I., and Schell, J., 1993, Expression of a ribosome inhibiting protein (RIP) or a bacterial chitinase leads to fungal resistance in transgenic plants, in Mechanisms of Plant Defense Responses (B. Fritig and M. Legrand, eds.), pp. 446–448, Kluwer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  78. Lotan, T., Ori, N., and Fluhr, R., 1989, Pathogenesis-related proteins are developmentally regulated in tobacco flowers, Plant Cell 1:881–887.PubMedGoogle Scholar
  79. Majeau, N., Trudel, J., and Asselin, A., 1990, Diversity of cucumber chitinase isoforms and characterisation of one seed basic chitinase with lysozyme activity, Plant Sci. 68:9–16.CrossRefGoogle Scholar
  80. Mariani, C., de Beukeleer, M., Truettner, J., Leemans, J., and Goldberg, R. B., 1990, Induction of male sterility in plants by a chimaeric ribonuclease gene, Nature 347:737–741.CrossRefGoogle Scholar
  81. Mariani, C., Gossele, V., de Beukeleer, M., de Block, M., Goldberg, R. B., de Greef, W., and Leemans, J., 1992, A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants, Nature 357:384–387.CrossRefGoogle Scholar
  82. Martini, N., Egen, M., Rüntz, I., and Strittmatter, G., 1993, Promoter sequences of a potato pathogenesis-related gene mediate transcriptional activation selectively upon fungal infection, Mol. Gen. Genet. 236:179–186.PubMedCrossRefGoogle Scholar
  83. Mauch, F., Mauch-Mani, B., and Boiler, T., 1988, Antifungal hydrolases in pea tissue, Plant Physiol. 88:936–942.PubMedCrossRefGoogle Scholar
  84. May, M. J., Hammond-Kosack, K. E., and Jones, J. D. G., 1996, Involvement of reactive oxygen species, glutathione metabolism, and lipid peroxidation in the Cf-dependent defense response of tomato cotyledons induced by race-specific elicitors of Cladosporium fulvum, Plant Physiol. 110:1367–1379.PubMedGoogle Scholar
  85. Meeley, R. B., Johal, G. S., Briggs, S. P., and Walton, J. D., 1992, A biochemical phenotype for a disease resistance gene of maize, Plant Cell 4:71–77.PubMedGoogle Scholar
  86. Mehdy, M. C., 1994, Active oxygen species in plant defense against pathogens, Plant Physiol. 105:467–472.PubMedGoogle Scholar
  87. Meins, F., Neuhaus, J.-M., Sperisen, C., and Ryals, J., 1992, The primary structure of plant pathogenesis-related glucanohydrolases and their genes, in Genes Involved in Plant Defense (T. Boiler and F. Meins, eds.), pp. 245–282, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  88. Melchers, L. S., Apotheker-de Groot, M., van der Knaap, J. A., Ponstein, A. S., Sela-Buurlage, M. A., Bol, J. F., Cornelissen, B. J. C., van den Elzen, P. J. M., and Linthorst, H. J. M., 1994, A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity, Plant J. 5:469–480.PubMedCrossRefGoogle Scholar
  89. Melchior, F., and Kindl, H., 1991, Arch. Biochem. Biophys. 288:552–557.PubMedCrossRefGoogle Scholar
  90. Memelink, J., Linthorst, H. J. M., Schilperoort, R. A., and Hoge, H. C., 1990, Tobacco genes encoding acidic and basic pathogenesis-related proteins display different expression patterns, Plant Mol. Biol. 14:119–126.PubMedCrossRefGoogle Scholar
  91. Meyer, P., 1995, Gene Silencing in Higher Plants and Related Phenomena in Other Eukaryotes, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  92. Michelmore, R., 1995, Molecular approaches to manipulation of disease resistance genes, Annu. Rev. Phytopathol. 15:393–427.CrossRefGoogle Scholar
  93. Mikkelsen, J. D., Berglund, L., Nielsen, K. K., Christiansen, H., and Bojsen, K., 1992, Structure of endochitinase genes from sugar beets, in Advances in Chitin and Chitosan (C. J. Brine, P. A. Sandford, and J. P. Zikakis, eds.), pp. 344–353, Elsevier Science Publishers, London.CrossRefGoogle Scholar
  94. Mitchell, R. E., 1984, The relevance of non-host specific toxins in the expression of virulence by pathogens, Annu Rev. Phytopathol. 22:215–245.CrossRefGoogle Scholar
  95. Molina, A., Segura, A., and Garcia-Olmedo, F., 1993, Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens, FEBS 316:119–122.CrossRefGoogle Scholar
  96. Moreno, M., Segura, A., and Garcia-Olmedo, F., 1994, Pseudothionin-St1, a potato peptide active against potato pathogen, Eur. J. Biochem. 223:135–139.PubMedCrossRefGoogle Scholar
  97. Mosqueda, G., van den Broek, G., Saucedo, O., Bailey, A. M., Alvarez-Morales, A., and Herrera-Estrella, L., 1990, Isolation and characterisation of the gene from Pseudomonas syringae pv. phaseolicola encoding the phaseolotoxin-insensitive ornithine carbamoyltransferase, Mol. Gen. Genet. 222:461–466.PubMedCrossRefGoogle Scholar
  98. Neale, A. D., Wahleithner, J. A., Lund, M., Bonnett, H. T., Kelly, A., Meeks-Wagner, D. R., Peacock, W. J., and Dennis, E. S., 1990, Chitinase, β-1,3-glucanase, osmotin and extensin are expressed in tobacco expiants during flower formation, Plant Cell 2:673–684.PubMedGoogle Scholar
  99. Neuenschwander, U., Vernooij, B., Friedrich, L., Uknes, S., Kessmann, H., and Ryals, J., 1995, Is hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance? Plant J. 8:227–233.CrossRefGoogle Scholar
  100. Nicholson, R. L., and Hammerschmid, R., 1982, Phenolic compounds and their role in disease resistance, Annu. Rev. Phytopathol. 30:369–389.CrossRefGoogle Scholar
  101. Rao, A. G., 1995, Antimicrobial peptides, Mol. Plant-Microbe Interact. 8:6–13.PubMedCrossRefGoogle Scholar
  102. Roberts, W. K., and Selitrennikoff, C. P., 1986, Isolation and partial characterization of two antifungal proteins from barley, Biochim. Biophys. Acta 880:161–170.PubMedCrossRefGoogle Scholar
  103. Samac, D. A., Hironoka, C. M., Yallay, P. E., and Shah, D. M., 1990, Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana, Plant Physiol. 93:907–914.PubMedCrossRefGoogle Scholar
  104. Schäfer, W., Straney, D., Ciuffetti, L., VanEtten, H. D., and Yoder, O. C., 1989, One enzyme makes a fungal pathogen, but not a saprophyte, virulent on a new host plant, Science 246:247–249.PubMedCrossRefGoogle Scholar
  105. Sela-Buurlage, M. B., Ponstein, A. S., Bres-Vloemans, S. A., Melchers, L. S., van den Elzen, P. J. M., and Cornelissen, B. J. C., 1993, Only specific tobacco (Nicotiana tabacum) chitinases and β-1,3-glucanases exhibit antifungal activity, Plant Physiol. 101:857–863.PubMedGoogle Scholar
  106. Shah, D. M., Rommens, C. M. T., and Beachy, R. N., 1995, Resistance to diseases and insects in transgenic plants: Progress and applications to agriculture, TIBTECK 13:362–368.CrossRefGoogle Scholar
  107. Siebertz, B., Logemann, J., Willmitzer, L., and Schell, J., 1989, Cis-analysis of the wound-inducible promoter wun1 in transgenic tobacco plants and histochemical localization of its expression, Plant Cell 1:961–968.PubMedGoogle Scholar
  108. Staskawicz, B. J., Panopoulos, N. J., and Hoogenraad, N. J., 1980, Phytotoxin-insensitive ornithine carbamoyltransferase of Pseudomonas syringae pv. phaseolicola. Basis for immunity to phaseolotoxin, J. Bacteriol. 142:720–723.PubMedGoogle Scholar
  109. Staskawicz, B. J., Ausubel, F. M., Baker, B. J., Ellis, J. G., and Jones, J. D. G., 1995, Molecular genetics of plant disease resistance, Science 268:661–667.PubMedCrossRefGoogle Scholar
  110. Stein, U., and Blaich, R., 1985, Untersuchungen über Stilbenproduktion und Botrytisanfälligkeit bei Vitis-Arten, Vitis 24:75–87.Google Scholar
  111. Stintzi, A., Geoffroy, D., Bersuder, D., Fritig, B., and Legrand, M., 1993a, cDNA cloning and expression studies of tobacco class III chitinases-lysozymes, in Developments in Plant Pathology, Vol. 2 (B. Fritig and M. Legrand, eds.), pp. 312–315, Kluwer, Dordrecht, The Netherlands.Google Scholar
  112. Stintzi, A., Heitz, T., Prasad, V., Wiedemann-Merdinoglu, S., Kauffmann, S., Geoffroy, P., Legrand, M., and Fritig, B., 1993b, Plant ‘pathogenesis-related’ proteins and their role in defense against pathogens, Biochimie 75:687–706.PubMedCrossRefGoogle Scholar
  113. Stirpe, F., and Hughes, R. C., 1989, Specificity of ribosome inactivating proteins with RNA N-glycosidase activity, Biochem. J. 262:1001–1002.PubMedGoogle Scholar
  114. Stirpe, F., Barbieri, L., Batelli, M. G., Soria, M., and Lappi, D. A., 1992, Ribosome-inactivating proteins from plants: Present status and future prospects, Biotechnology 10:405–412.PubMedCrossRefGoogle Scholar
  115. Strittmatter, G., Janssens, J., Opsomer, C., and Botterman, J., 1995, Inhibition of fungal disease development in plants by engineering controlled cell death, Biotechnology 13:1085–1089.CrossRefGoogle Scholar
  116. Strittmatter, G., Gheysen, G., Gianinazzi-Pearson, V., Hahn, K., Niebel, A., Rohde, W., and Tacke, E., 1996, Infections with various types of organisms stimulate transcription from a short promoter fragment of the potato gst1 gene, Mol. Plant-Microbe Interact. 9:68–73.PubMedCrossRefGoogle Scholar
  117. Terras, F. R. G., Schoofs, H. M. E., de Bolle, M. F. C., van Leuven, F., Rees, S. B., Vanderleyden, J., Cammue, B. P. A., and Broekaert, W. F., 1992, Analysis of two novel classes of antifungal proteins from radish (Raphanus sativus L.) seeds, J. Biol. Chem. 267:15301–15309.PubMedGoogle Scholar
  118. Terras, F. R. G., Eggermont, K., Kovaleva, V., Raikhel, N. V., Osborn, R. W., Kester, A., Rees, S. B., Torrekens, S., van Leuven, F., Vanderleyden, J., Cammue, B. P. A., and Broekaert, W. F., 1995, Small cysteine-rich antifungal proteins from radish: Their role in host defense, Plant Cell 7:573–588.PubMedGoogle Scholar
  119. Toyoda, H., Matsuda, Y., Yamaga, T., Ikeda, S., Morita, M., Tamai, T., and Ouchi, S., 1991, Suppression of the powdery mildew pathogen by chitinase microinjected into barley coleoptile epidermal cells, Plant Cell Rep. 10:217–220.Google Scholar
  120. Trudel, J., Audy, P., and Asselin, A., 1989, Electrophoretic forms of chitinase activity in Xanthi-nc tobacco, healthy and infected with tobacco mosaic virus, Mol. Plant-Microbe Interact. 2:315–324.CrossRefGoogle Scholar
  121. Trudel, J., Potvin, C., and Asselin, A., 1992, Expression of active hen egg-white lysozyme in transgenic tobacco, Plant Sci. 87:55–67.CrossRefGoogle Scholar
  122. Trudel, J., Potvin, C., and Asselin, A., 1995, Secreted hen lysozyme in transgenic tobacco: Recovery of bound enzyme and in vitro growth inhibition of plant pathogens, Plant Sci. 106:55–62.CrossRefGoogle Scholar
  123. VanEtten, H. D., Matthews, D. E., and Matthews, P. S., 1989, Phytoalexin detoxification: Importance for pathogenicity and practical implications, Annu. Rev. Phytopathol. 27:143–164.PubMedCrossRefGoogle Scholar
  124. Vierheilig, H., Alt, M., Neuhaus, J.-M., Boller, T., and Wiemken, A., 1993, Colonization of transgenic N. sylvestris plants, expressing different forms of N. tabacum chitinase, by the root pathogen Rhizotonia solani and by the mycorrhizal symbiont Glomus mosseae, Mol. Plant-Microbe Interact. 6:261–264.CrossRefGoogle Scholar
  125. Vornam, B., Schön, H., and Kindl, H., 1988, Control of gene expression during induction of cultured peanut cells: mRNA levels, protein synthesis and enzyme activity of stilbene synthase, Plant Mol. Biol. 10:235–243.CrossRefGoogle Scholar
  126. Ward, E. R., Payne, G. B., Mover, M. B., Williams, S. C., Dincher, S. S., Sharkey, K. C., Beck, J. H., Taylor, H. T., Ahl-Goy, P., Meins, F., and Ryals, J. A., 1991a, Differential regulation of β-1,3-glucanase messenger RNAs in response to pathogen infection, Plant Physiol. 96:390–397.PubMedCrossRefGoogle Scholar
  127. Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D. C., Ahl-Goy, P., Metraux, J. P., and Ryals, J. A., 1991b, Plant Cell 3:1085–1094.PubMedGoogle Scholar
  128. Weltring, K.-M., Turgeon, B. G., Yoder, O. C., and VanEtten, H. D., 1988, Isolation of a phytoalexin-detoxification gene from the plant pathogenic fungus Nectria haematococca by detecting its expression in Aspergillus nidulans, Gene 68:335–344.PubMedCrossRefGoogle Scholar
  129. Wessels, J. G. H., and Sietsma, J. H., 1981, Fungal cell walls: A survey, in Encyclopedia of Plant Physiology, New Series, Vol. 13B (W. Tanner and F. A. Loewus, eds.), pp. 352–394, Springer-Verlag, Berlin.Google Scholar
  130. Woodward, S., and Pearce, R. B., 1988, The role of stilbenes in resistance of Sitka spruce (Picea sitchensis (Bong.) Carr.) to entry of fungal pathogens, Physiol. Mol. Plant Pathol. 33:127–149.CrossRefGoogle Scholar
  131. Wu, G., Shortt, B. J., Lawrence, E. B., Levine, E. B., Fitzsimmons, K. C., and Shah, D. M., 1995, Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants, Plant Cell 7:1357–1368.PubMedGoogle Scholar
  132. Zhu, Q., Maher, E. A., Masoud, S., Dixon, R. A., and Lamb, C. J., 1994, Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco, Biotechnology 12:807–812.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Günter Strittmatter
    • 1
  • Koen Goethals
    • 2
  • Marc Van Montagu
    • 2
  1. 1.Plant Genetic SystemsGentBelgium
  2. 2.Laboratorium voor Genetica, Department of GeneticsFlanders Interuniversity Institute for Biotechnology (VIB), Universiteit GentGentBelgium

Personalised recommendations