Choroidal Circulation and Heat Convection at the Fundus of the Eye Implications for Laser Coagulation and the Stabilization of Retinal Temperature

  • Reginald Birngruber


Since its introduction by Meyer-Schwickerath in 1949 (Meyer-Schwickerath, 1949), retinal light coagulation has become indispensable for treating numerous retinal diseases. For example, scar formation due to retinal laser effects connects the neural retina to the underlying choroid or seals off attached retina from detached retinal areas during preliminary retinal detachment or after surgical retinal reattachment. Wide-area obliteration with laser coagulation in the retinal periphery in proliferative diabetic retinopathy improves metabolism in the central retina, which is decisive for vision and reduces vascular proliferation and edema (Birngruber and Gabel, 1984).


Heat Convection Pigment Epithelium Choroidal Thickness Neural Retina Thermal Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alm, A., and Bill, A., 1973, Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): A study with radioactively labeled microspheres including flow determinations in brain and some other tissues, Exp. Eye Res. 15:15.PubMedCrossRefGoogle Scholar
  2. Alm, A., Bill, A., and Young, F. A., 1973, The effects of pilocarpine and neostigmine on the blood flow through the anterior uvea in monkeys. A study with radioactively labeled microspheres, Exp. Eye Res. 15:31.PubMedCrossRefGoogle Scholar
  3. Ashton, N., 1952, Observations on the choroidal circulation, Br. J. Ophthalmol. 36:465.PubMedCrossRefGoogle Scholar
  4. Bargmann, W., 1977, Histologie und Mikroskopische Anatomie des Menschen, 7th ed., Thieme Verlag, Stuttgart.Google Scholar
  5. Bill, A., 1962a, Intraocular pressure and blood flow through the uvea, Arch. Ophthalmol. 67:90.Google Scholar
  6. Bill, A., 1962b, Quantitative determination of uveal blood flow in rabbits, Acta Physiol. Scand. 55:101.PubMedCrossRefGoogle Scholar
  7. Bill, A., 1981, Ocular circulation, Adler’s Physiology of the Eye, p. 210.Google Scholar
  8. Bill, A., and Phillips, C. I., 1971, Uveoscleral drainage of aqueous humor in human eyes, Exp. Eye Res. 12:275.PubMedCrossRefGoogle Scholar
  9. Bimgruber, R., 1980, Thermal modeling in biological tissues, in: Lasers in Biology and Medicine (F. Hillenkamp, R. Pratesi, and C. A. Sacchi, eds.), Plenum Press, New York, p. 77.CrossRefGoogle Scholar
  10. Bimgruber, R., and Gabel, V.-P., 1983, Thermal versus photochemical damage in the retina—Thermal calculations for exposure limits, Trans. Ophthalmol. Soc. U.K. 103:442.Google Scholar
  11. Bimgruber, R., and Gabel, V.-P. (eds.), 1984, Laser treatment and photocoagulation of the eye. Proceedings of the International Symposium Munich, 1982, Junk, The Hague.Google Scholar
  12. Bimgruber, R., Drechsel, E., Hillenkamp, F., and Gabel, V.-P., 1979, Minimal spot size on the retina formed by the optical system of the eye, Int. Ophthalmol. 1(3): 175.CrossRefGoogle Scholar
  13. Bimgruber, R., Weinberg, W., Gabel, V.-P., and Kain, H., 1980, Der Einfluß der Aderhautdurchblutung auf die Entstehung von thermischen Läsionen am Augenhintergrund, Ber. Dtsch. Ophthalmol. Ges. 77:705.CrossRefGoogle Scholar
  14. Birngruber, R., Weinberg, W., and Gabel, V.-P., 1981, Der Einfluß der Expositionsparameter auf die Schadensausdehnung bei der Netzhautkoagulation, dargestellt anhand eines thermischen Modells, Ber. Dtsch. Ophthalmol. Ges. 78:599.Google Scholar
  15. Birngruber, R., Gabel, V.-P., and Hillenkamp, F., 1983b, Experimental studies of laser thermal retinal injury, Health Phys. 44(5):519.PubMedCrossRefGoogle Scholar
  16. Birngruber, R., Hillenkamp, F., and Gabel, V.-P., 1985, Theoretical investigations of laser thermal retinal injury, Health Phys. 48(6):781.PubMedCrossRefGoogle Scholar
  17. Boergen, K.-P., Birngruber, R., and Hillenkamp, F., 1981, Laser-induced endovascular thrombosis as a possibility of selective vessel closure, Ophthalmic Res. 13:139.CrossRefGoogle Scholar
  18. Clarke, A. M., Geeraets, W. J., and Ham, W. T., 1969, An equilibrium thermal model for retinal injury from optical sources, Appl. Opt. 8:1051.PubMedCrossRefGoogle Scholar
  19. Correia, C. J., 1957, Vascularization de la choroide, Acta Anat. 31:238.CrossRefGoogle Scholar
  20. Davson, H., 1962, The Eye, Vol. 4, Academic Press, New York.Google Scholar
  21. Ernest, J. T., 1979, Choroidal blood flow measurement in the monkey by clearance of indo-cyanine green dye, Exp. Eye Res. 29:7.PubMedCrossRefGoogle Scholar
  22. Ernest, J. T., and Potts, A., 1971, Pathophysiology of the distal portion of the optic nerve. IV. Local temperature as a measure of blood flow, Am. J. Ophthalmol. 72:435.Google Scholar
  23. Feeney, L., and Hogan, M. J., 1961, Electron microscopy of the human choroid. I. Cells and supporting structures, Am. J. Ophthalmol. 51:1058.Google Scholar
  24. Feeney, L., Grieshaber, J. H., and Hogan, M. J., 1965, Studies on human ocular pigment, in: Eye Structure, II (Suppl.) (J. W. Rohen, ed.), Schattauer Verlag, Stuttgart.Google Scholar
  25. Friedmann, E., 1970, Choroidal blood flow. Pressure-flow relationships, Arch. Ophthalmol. 83:95.CrossRefGoogle Scholar
  26. Friedmann, E., and Kuwabara, T., 1968, The retinal pigment epithelium. IV. The damaging effects of radiant energy, Arch. Ophthalmol. 80:265.CrossRefGoogle Scholar
  27. Gabel, V.-P., Birngruber, R., and Hillenkamp, F., 1976, Die Lichtabsorption am Augenhintergrund. Mikrospektralphotometrische Bestimmung der wellenlängenabhängigen Lichtabsorption in Pigmentepithel und Chorioidea von Mensch, Rhesusaffe und Chinchillakaninchen, GSF-Bericht A 55.Google Scholar
  28. Geeraets, W. J., Williams, R. C., Harn, W. T., Jr., and DuPont, G., III, 1962, Rate of blood flow and its effect on chorioretinal burns, Arch. Ophthalmol. 68:58.PubMedCrossRefGoogle Scholar
  29. Gorisch, W., and Boergen, K.-P., 1982, Heat-induced contraction of blood vessels, Lasers Surg. Med. 2:1.PubMedCrossRefGoogle Scholar
  30. Ham, W. T., Williams, R. C., Mueller, H. A., Ruffin, R. S., Schmidt, F. H., Clarke, A. M., and Vos, J. J., 1965, Ocular effects of laser radiation, Acta Ophthalmol. 43:390.Google Scholar
  31. Ham, W. T., Jr., Ruffolo, J. J., Jr., Mueller, H. A., and Guerry, D., III, 1980a, The nature of retinal radiation damage, dependence on wavelength, power level and exposure time, Vision Res. 20:1105.PubMedCrossRefGoogle Scholar
  32. Ham, W. T., Jr., Mueller, H. A., Ruffolo, J. J., Jr., and Guerry, D., III, 1980b, Solar retinopathy as a function of wavelength, in: The Effects of Constant Light on Visual Processes (T. P. William and B. M. Baker, eds.), Plenum Press, New York.Google Scholar
  33. Hayreh, S. S., 1974, The choriocapillaris, Graefe’s Arch. Klin. Exp. Ophthalmol. 192:165.CrossRefGoogle Scholar
  34. Hildebrand, F. P., 1968, Finite-Difference Equations and Simulations, Prentice-Hall, Englewood Cliffs.Google Scholar
  35. Hogan, M. J., and Feeney, L., 1961, Electron microscopy of the human choroid, Am. J. Ophthalmol. 51:1084.Google Scholar
  36. Hughes, A., 1972, A schematic eye for the rabbit, Vision Res. 12:123.PubMedCrossRefGoogle Scholar
  37. Hunold, W., 1983, Die morphologische und funktionelle Gliederung der menschlichen Choriocapillaris. Eine anatomische und angiographische Studie am hinteren Augenabschnitt, Habilitationsschrift Medizinische Fakultät der Universität Aachen.Google Scholar
  38. Jaeger, W., 1980, Aussprache W. Jaeger zu R. Birngruber, Ber. Dtsch. Ophthalmol. Ges. 77:709.Google Scholar
  39. Kleen, W., and Müller, R., 1969, Laser, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  40. Kohlrausch, F., 1968, Praktische Physik, Vol. 1, Teubner, Stuttgart.Google Scholar
  41. Kollarits, C. R., Goldman, H., Murphy, S., and Kollarits, F. J., 1976, Use of C-antipyrine for estimation of rhesus monkey eye blood flow, Invest. Ophthalmol. 17:740.Google Scholar
  42. Krey, H., 1975, Segmental vascular patterns of the choriocapillaris, Am. J. Ophthalmol. 80:198.PubMedGoogle Scholar
  43. Leopold, I. H., and Shannon, G. M., 1956, Choroid—Vascularization, Am. Ophthalmol. Soc. Trans. 54:73.Google Scholar
  44. Littmann, H., 1957, Der Zeiss-Lichtkoagulator nach Meyer-Schwickerath mit Xenonhochdrucklampe, Ber. Dtsch. Ophthalmol. Ges. 61:311.Google Scholar
  45. Lorenz, B., 1989, Qantifizierung von Laserinduzierten Aderhauteffekten in Abhängigkeit von der Wellenlänge unter Berücksichtigung der Aderhautgeometrie, Habilitationsschrift Universität München.Google Scholar
  46. McCord, R. C., Weinberg, W., and Hillenkamp, F., 1975, Micro-miniature thermoelectric sensors for dynamic temperature measurements in laser irradiated tissue, Biomed. Tech. 20:171.CrossRefGoogle Scholar
  47. Maiman, T. H., 1960, Optical and microwave-optical experiments in ruby, Phys. Rev. Lett. 4(11):464.CrossRefGoogle Scholar
  48. Mainster, M. A., 1986, Wavelength selection in macular photocoagulation, Ophthalmology 93:952.PubMedGoogle Scholar
  49. Mainster, M. A., White, T. J., Tips, J. H., and Wilson, P. W., 1970, Retinal temperature increases produced by intense light sources, J.Opt. Soc. Am. 60:264.PubMedCrossRefGoogle Scholar
  50. Matsuo, N., 1980, Studies on choroidal circulation, Acta. Soc. Ophthalmol. Jpn. 84:2147.Google Scholar
  51. Meesmann, A., 1930, Blutgasanalysen am Kaninchenauge, Ber. Dtsch. Ophthalmol. Ges. 48:99.Google Scholar
  52. Meyer-Schwickerath, G., 1949, Koagulation der Netzhaut mit Sonnenlicht, Ber. Dtsch. Ophthalmol. Ges. 55:256.Google Scholar
  53. Meyer-Schwickerath, G., 1960, Light Coagulation, Mosby, St. Louis.Google Scholar
  54. Niesei, P., 1962, Messungen von experimentell erzeugten Änderungen der Aderhautdurchblutung bei Kaninchen, Karger Verlag, Basel.Google Scholar
  55. O’Day, D. M., Mathews, B. F., Aronson, S. B., Pollycore, M., and Coon, A., 1971, Ocular blood flow measurement by nuclide labeled microspheres, Arch. Ophthalmol. 86:205.PubMedCrossRefGoogle Scholar
  56. Parver, L. M., Auker, C., and Carpenter, D. O., 1980, Choroidal blood flow as a heat dissipating mechanism in the macula, Am. J. Ophthalmol. 89:641.PubMedGoogle Scholar
  57. Perry, D. D., and Risco, J. M., 1982, Choroidal microvascular repair after argon laser photocoagulation, Am. J. Ophthalmol. 93:787.PubMedGoogle Scholar
  58. Peyman, G. A., and Conway, M. D., 1983, Transpupillary CW-YAG laser coagulation. A comparison with argon green and krypton red lasers, Ophthalmology 90:992.PubMedGoogle Scholar
  59. Priebe, L. A., Cain, C. P., and Welsh, A. J., 1975, Temperature rise required for production of minimal lesions in the Macaca mulatta retina, Am. J. Ophthalmol. 79:405.PubMedGoogle Scholar
  60. Prince, J. H., 1964, The Rabbit in Eye Research, Thomas, Springfield, 111.Google Scholar
  61. Rohen, J. W., 1964, Das Auge und seine Hilfsorgane, in: Handbuch der mikroskopischen Anatomie III (4) (J. W. Rohen, ed.), Springer, Berlin.Google Scholar
  62. Roulier, A., 1970, Calculation of temperature increase in the eye produced by intense light. Bull. Math. Biophys. 32:403.PubMedCrossRefGoogle Scholar
  63. Ruskell, G. L., 1961, Choroidal vascularization in the rabbit, Am. J. Ophthalmol. 52:807.PubMedGoogle Scholar
  64. Schlegel, W. A., and Lawrence, C., 1969, Doppler measurement of vortex vein blood flow in animals, Invest. Ophthalmol. 10:201.Google Scholar
  65. Scullica, L., 1957, Studi sull’angiotettonica della tunica vasculosa bulbi; rcerche in Lepus cuniculus, Biol. Lot. 10:1.Google Scholar
  66. Scullica, L., 1958, Morphologische Untersuchungen über die arterio-venösen Anastomosen des Kaninchenauges, Acta Anat. 34:269.PubMedCrossRefGoogle Scholar
  67. Shimizu, K., and Ujiie, K., 1976, Fluorescein angiography and angioarchitecture of the choroid, in: Int. Symp. on Fluorescein Angiography, Junk, The Hague, p. 187.Google Scholar
  68. Stein, H. A., and Wakim, K. G., 1957, Choroid—Vascularization, Am. J. Med. Sci. 234:227.PubMedGoogle Scholar
  69. Strang, R., Wilson, T. M., and MacKenzie, E. T., 1977, Choroidal and cerebral blood flow in baboons measured by the external monitoring of radioactive inert gases, Invest. Ophthalmol. 16:571.Google Scholar
  70. Trokel, S., 1965, Quantitative studies of choroidal blood flow by reflective densitometry, Invest. Ophthalmol. 4:1129.PubMedGoogle Scholar
  71. Tso, M. O. M., and Torczynski, E., 1979, Architecture of the choriocapillaris and macular edema, XXIII Concilium Ophthalmologicum Kyoto, 1978, Excerpta Medica Vol. 1, p. 239.Google Scholar
  72. Vassiliadis, A., Chang, H., Peabody, R. R., Peppers, N. A., Honey, R. C., Rose, H. W., Rosan, R. C., Zweng, H. C., Flocke, M., and Dedrick, K., 1968, Investigations of laser damage to ocular tissues, Stanford Research Institute SRI Prg. 6680, Final Report.Google Scholar
  73. Vassiliadis, A., Zweng, H. C., and Dedrick, K. G., 1971, Ocular laser threshold investigations, Stanford Research Institute SRI Prg. 8209, Final Report.Google Scholar
  74. Vilstrup, G., 1952, Studies on the Choroidal Circulation, Munksgaard, Copenhagen.Google Scholar
  75. Weigelin, E., 1975, Hämodynamik und Auge, Klin. Monatsbl. Augenheilkd. 166:585.PubMedGoogle Scholar
  76. Weinberg, W., 1983, Die Änderung des Reflexionsvermögens der Netzhaut als Maß für die räumliche Ausdehnung der thermisch induzierten Gewebsschädigung bei der therapeutischen Photokoagulation, Dissertation bei der Johann-Wolfgang-Goethe Universität Frankfurt.Google Scholar
  77. Welch, A. J., Wissler, E. H., and Priebe, L. A., 1980, Significance of blood flow in calculations of temperature in laser irradiated tissue, IEEE Trans. Biomed. Eng. BME-27:164.Google Scholar
  78. Wheeler, C. B., 1976, Calculation of retinal temperature distributions resulting from laser irradiation of the eye, Phys. Med. Biol. 21:616.PubMedCrossRefGoogle Scholar
  79. White, T., 1984, Guidelines for running the thermal computational model of the eye, United States Army Environmental Hygiene Agency, HSHB-RL-L/WP.Google Scholar
  80. Wilson, T. M., Strang, R., Wallace, J., Horton, P. W., and Johnson, N. F., 1973, The measurement of the choroidal blood flow in the rabbit using 85-krypton, Exp. Eye Res. 16:421.PubMedCrossRefGoogle Scholar
  81. Wissler, E. H., 1976, An analysis of chorioretinal thermal response to intense light exposure, IEEE Trans. Biomed. Eng. 27:207.CrossRefGoogle Scholar
  82. Zweng, H. C., and Flocks, M., 1965, Clinical experiences with laser photocoagulation, Fed. Proc. 24(1):65.PubMedGoogle Scholar
  83. Zweng, H. C., Flocks, M., Kapany, N. S., Silbertrust, N., and Peppers, N. A., 1964, Experimental laser photocoagulation, Am. J. Ophthalmol. 58:353.PubMedGoogle Scholar
  84. Zweng, H. C., Little, H. L., and Peabody, R. R., 1971, Argon laser photocoagulation of diabetic retinopathy, Arch. Ophthalmol. 86:395.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Reginald Birngruber
    • 1
    • 2
  1. 1.H. Wacker Laboratory of Medical Laser ApplicationsLudwig Maximilians University MunichFederal Republic of Germany
  2. 2.Wellman Laboratories of PhotomedicineHarvard University Massachusetts General HospitalBostonUSA

Personalised recommendations