Magnetic Resonance Image Analysis

  • Robert T. Schultz
  • Amit Chakraborty
Part of the Human Brain Function book series (HBFA)


The great advances made in neuroimaging technology during the last decade provide an unparalleled opportunity for neuroscientists to measure gross brain structure with a high degree of precision. However, this opportunity has yet to be fully realized, largely because the development of reliable, valid, and efficient means of quantifying all the information contained within the digital display has lagged far behind the ability to acquire these images. Bigler’s review (1994) demonstrated that even though many studies have employed neuroimaging methods to investigate brain-behavior relationships, the vast majority have not employed quantitative techniques (Figure 1) but rather have relied on binary, clinical readings of pathology (present or absent) and hemisphere or quadrant analyses. While such approaches are appropriate for detecting gross structural abnormalities (e.g., infarct) and active pathological processes (e.g., tumor) responsible for frank nondevelopmental neurologic disorders, the literature in neuropsychology suggests that this approach is sorely inadequate for illuminating the neuropathology of disorders where there is likely congenital or developmental disturbance (e.g., schizophrenia, dyslexia).


White Matter Gray Matter Pixel Intensity Radio Frequency Pulse Hydrogen Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agranoff, B. W. (1984). Lipids. In G. J. Siegel, B. W. Agranoff, R. W. Albers, & P. B. Molioff (Eds.), Basic neurochemistry: Molecular, cellular and medical aspects (4th ed., pp. 91–107). New York: Raven Press.Google Scholar
  2. Allen, L. S., Richey, M. F., Chai, Y. M., & Gorski, R. A. (1991). Sex differences in the corpus callosum of the living human being. Journal of Neuroscience, 11, 933–942.PubMedGoogle Scholar
  3. Besag, J. (1986). On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, 48, 259–302.Google Scholar
  4. Bigler, E. D. (1994). Neuroimaging and neuropsychological assessment. In C. R. Reynolds (Ed.), Cognitive assessment: A multidisciplinary perspective (pp. 1–34). New York: Plenum Press.Google Scholar
  5. Bird, C. R., Hedberg, M., Drayer, B. P., Keller, P. J., Flom, R. A., & Hodak, J. A. (1989). MR assessment of myelination in infants and children: Usefulness of marker sites. American Journal of Neuroradiology, 10, 731–740.PubMedGoogle Scholar
  6. Bonar, D. C. Schaper, K. A., Anderson, J. R., Rottenberg, D. A., & Strother, S. C. (1993). Graphical analysis of MR feature space for measurement of CSF, gray matter, and white matter volumes. Journal of Computer Assisted Tomography, 17, 461–470.PubMedCrossRefGoogle Scholar
  7. Bottomley, P. A., Hart, H. R., Edelstein, W. A., Schenck, J. F., Smith, L. S., Leue, W. M., Otward, M. M., & Redington, R. W. (1984). Anatomy and metabolism of the normal human brain studied by magnetic resonance at 1.5 tesla. Radiology, 150, 441–446.PubMedGoogle Scholar
  8. Breger, R. K., Wehrli, F. W., Charles, H. C., MacFall, J. R., & Haughton, V. M. (1986). Reproducibility of relaxation and spin-density parameters in phantoms and the human brain measured by MR imaging at 1.5 T. Magnetic Resonance in Medicine, 3, 649–662.PubMedCrossRefGoogle Scholar
  9. Canny (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 679–698.PubMedCrossRefGoogle Scholar
  10. Courschesne, E., Yeung-Courschesne, R., & Egaas, B. (1994). Methodology in neuroanatomic measurement. Neurology, 44, 203–208.CrossRefGoogle Scholar
  11. Damasio, H., & Damasio, A. R. (1989). Lesion analysis in neuropsychology. New York: Oxford University Press.Google Scholar
  12. Denenberg, V. H., Kertesz, A., and Cowell, P. E. (1991). A factor analysis of the human’s corpus callosum. Brain Research, 548, 126–132.PubMedCrossRefGoogle Scholar
  13. Dietrich, R. B., Bradley, W. G., Zaragoza, E. J., Otto, R. J., Taira, R. K., Wilson, G. H., & Kangarloo, H. (1988). MR evaluation of early myelination patterns in normal and developmentally delayed infants. American Journal of Radiology, 150, 889–896.Google Scholar
  14. Dobbing, J., & Sands, J. (1973). Quantitative growth and development of human brain. Archives of Diseases in Childhood, 48, 757–767.CrossRefGoogle Scholar
  15. Documenta Geigy (1970). Scientific tables (7th ed.). Basel, Switzerland: J. R. Geigy S.A.Google Scholar
  16. Farrar, T. C., & Becker, E. D. (1971). Pulse and Fourier transform NMR: Introduction to theory and methods. New York: Academic Press.Google Scholar
  17. Finch, E. D. (1979). Nuclear magnetic resonance studies of the state of water and ions in aqueous cytoplasm. In A. D. Keith (Ed.), The aqueous cytoplasm (pp. 60–90). New York: Marcel Dekker, Inc.Google Scholar
  18. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.PubMedCrossRefGoogle Scholar
  19. Gore, J. C., O’Donnell, M., Pope, C. F., Majumdar, S., & Adams, W. J. (1988). Quantitative NMR tissue characterization using calculated images and automated image segmentation. In C. L. Partain, R. R. Price, J. A. Patton, M. V. Kularni, & A. E. James (Eds.), Magnetic resonance imaging: Vol. 1 (pp. 117–132). Philadelphia: W. B. Saunders.Google Scholar
  20. Guilford, J. P., & Fruchter, B. (1973). Fundamental statistics in psychology and education (5th ed.). New York: McGraw-Hill Book Company.Google Scholar
  21. Holland, B. A., Haas, D. K., Norman, D., Brant-Zawadzki, M., & Newton, T. H. (1986). MRI of normal brain maturation. American Journal of Neuroradiology, 7, 201–208.PubMedGoogle Scholar
  22. Interactive Data Language [computer software] (1987). Denver, Co: Research Systems Incorporated. Jack, C. R., Bentley, M. D., Twomey, C. K., & Zinmeister, A. R. (1990). MR imaging-based volume measurements of the hippocampal formation and anterior temporal lobe: Validation studies. Radiology, 176, 205–209.PubMedGoogle Scholar
  23. Jernigan, T. L., Press, G. A., & Hesselink, J. R. (1990). Methods for measuring brain morphologic features on magnetic resonance images: Validation and normal aging. Archives of Neurology, 47, 27–32.PubMedCrossRefGoogle Scholar
  24. Jernigan, T. L., Zisook, S., Heaton, R. K., Moranville, J. T., Hesselink, J. R., & Braff, D. L. (1991). Magnetic resonance imaging abnormalities in lenticular nuclei and cerebral cortex in schizophrenia. Archives of General Psychiatry, 48, 881–890.PubMedCrossRefGoogle Scholar
  25. Jouandet, M. L., Tramo, M. J., Herron, D. M., Hermann, A., Loftus, W. C., Bazeell, J., & Gazzaniga, M. S. (1989). Brain prints: Computer-generated two dimensional maps of the human cerebral cortex in vivo. Journal of Cognitive Neuroscience, 1, 88–117.CrossRefGoogle Scholar
  26. Kamman, R. L., Go, K. G., Muskiet, F. A. J., Stomp, G. P., Van Dijk, P., & Berendsen, H. J. C. (1984). Proton spin relaxation studies of fatty tissue and cerebral white matter. Magnetic Resonance Imaging, 2, 211–220.PubMedCrossRefGoogle Scholar
  27. Kanji, G. K. (1993). 100 statistical tests. London: Sage Publications.Google Scholar
  28. Kass, M., Witkins, A., & Terzopoulus, D. (1988). Snakes: Active contour models. International Journal of Computer Vision, 1, 321–331.CrossRefGoogle Scholar
  29. Kjos, B. O., Ehman, R. L., & Brant-Zawadzki, M. (1985). Reproducibility of T1 and T2 relaxation times calculated from routine MR imaging sequences: Phantom study. American Journal of Neuroradiology, 6, 277–283.Google Scholar
  30. Kohn, M. I., Tanna, N. K., Herman, G. T., Resnick, S. M., Mozely, P. D., Gur, R. E., Alavi, A., Zimmerman, R. A., & Gur, R. C. (1991). Analysis of brain and cerebrospinal fluid volumes with MR imaging. Radiology, 178, 115–122.PubMedGoogle Scholar
  31. Kulynych, J. J., Vladar, K., Jones, D. W., & Weinberger, D. R. (1993). Three-dimensional surface rendering in MRI morphometry: A study of the planum temporale. Journal of Computer Assisted Tomography, 17, 529–535.PubMedCrossRefGoogle Scholar
  32. Leahy, R., Herbert, T., & Lee, R. (1989). Application of Markov random fields in medical imaging. In D. Orthendahl & J. Lacer (Eds.), Proceedings of information processing in medical imaging (pp. 1-14). Wiley-Liss.Google Scholar
  33. Leonard, C. M., Voeller, K. K. S., Lombardino, L. J., Morris, M. K., Hynd, G. W., Alexander, A. W., Andersen, H. G., Garofalakis, M., Honeyman, J. C., Mao, J. Agee, F., & Staab, E. V. (1993). Anomalous cerebral morphology in dyslexia revealed with MR imaging. Archives of Neurology, 50, 461–469.PubMedCrossRefGoogle Scholar
  34. Lim, K. O., & Pfefferbaum, A. (1989). Segmentation of MR brain images into cerebrospinal fluid spaces, white and gray matter. Journal of Computer Assisted Tomography, 13, 588–593.PubMedCrossRefGoogle Scholar
  35. MacFall, J. R., Wehrli, F. W., Boreger, R. K., and Johnson, G. A. (1987). Methodology for measurement and analysis of relaxation times in proton imaging. Magnetic Resonance Imaging, 5, 209–220.PubMedCrossRefGoogle Scholar
  36. Majumdar, S., Orphanoudakis, S. C., Gmitro, A., O’Donnell, M., & Gore, J. C. (1986a). Errors in the measurement of T2 using multiple-echo MRI techniques: I. Effects of radiofrequency pulse imperfections. Magnetic Resonance in Medicine, 3, 397–414.PubMedCrossRefGoogle Scholar
  37. Majumdar, S., Orphanoudakis, S. C., Gmitro, A., O’Donnell, M., & Gore, J. C. (1986b). Errors in the measurement of T2 using multiple-echo MRI techniques: II. Effects of static field inhomogeneity. Magnetic Resonance in Medicine, 3, 562–574.PubMedCrossRefGoogle Scholar
  38. Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society of London, 207, 187–217.PubMedCrossRefGoogle Scholar
  39. Ono, M., Kubik, S., & Abernathey, C. D. (1990). Atlas of the cerebral sulci. New York: Thieme Medical Publishers, Inc.Google Scholar
  40. Perman, W. H., Hilal, S. K., Simon, H. E., & Maudsley, A. A. (1984). Contrast manipulation in NMR imaging. Magnetic Resonance Imaging, 2, 23–32.PubMedCrossRefGoogle Scholar
  41. Peterson, B., Riddle, M. A., Cohen, D. J., Katz, L. D., Smith, J. C., Hardin, M. T., & Leckman, J. F. (1993). Reduced basal ganglia volumes in Tourette’s syndrome using three-dimensional reconstruction techniques from magnetic resonance images. Neurology, 43, 941–949.PubMedCrossRefGoogle Scholar
  42. Press, G. A., Amarad, D. G., & Squire, L. R. (1989). Hippocampal abnormalities in amnesic patients revealed by high resolution magnetic resonance imaging. Nature, 341, 54–57.PubMedCrossRefGoogle Scholar
  43. Rademacher, J., Galaburda, A. M., Kennedy, D. N., Filipek, P. A., & Caviness, V. S. (1992). Human cerebral cortex: Localization, parcellation, and morphometry with magnetic resonance imaging. Journal of Cognitive Neuroscience, 4, 352–374.CrossRefGoogle Scholar
  44. Raz, N., Torres, I. J., Spencer, W. D., White, K., & Acker, J. D. (1992). Age-related regional differences in cerebellar vermis observed in vivo. Archives of Neurology, 49, 412–416.PubMedCrossRefGoogle Scholar
  45. Robb, R. A., & Hansen, D. P. (1990). ANALYZE: A software system for biomedical image analysis. Proceedings from the first conference on visualization in biomedical computing (pp. 507–518). Los Alamitos, CA: IEEE Press.CrossRefGoogle Scholar
  46. Runge, V. M. (1994). Magnetic resonance imaging of the brain. Philadelphia: Lippincott.Google Scholar
  47. Schultz, R. T. (1991). The relationship between intelligence and gray-white image contrast: An MRI study of college students. Unpublished doctoral dissertation, University of Texas at Austin.Google Scholar
  48. Schultz, R. T., Cho, N. K., Staib, L. H., Kier, L. E., Fletcher, J. M., Shaywitz, S. E., Shankweiler, D. P., Katz, L., Gore, J. C., Duncan, J. S., & Shaywitz, B. A. (1994). Brain morphology in normal and dyslexic children: The influence of sex and age. Annals of Neurology, 35, 732–742.PubMedCrossRefGoogle Scholar
  49. Singer, H. S., Reiss, A. L., Brown, J. E., Aylward, E. H., Shih, B., Chee, E., Harris, E. L., Reader, M. J., Chase, G. A., Bryan, R. N., & Denckla, M. B. (1993). Volumetric MRI changes in basal ganglia of children with Tourette’s syndrome. Neurology, 43, 950–956.PubMedCrossRefGoogle Scholar
  50. Staib, L. H., & Duncan, J. S. (1992). Boundary finding with parametrically deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 1061–1075.CrossRefGoogle Scholar
  51. Steinmetz, H., Furst, G., & Freund, H. J. (1989). Cerebral cortical localization: Application and validation of the proportional grid system in MR imaging. Journal of Computer Assisted Tomography, 13, 10–19.PubMedCrossRefGoogle Scholar
  52. Steinmetz, H., Fürst, G., & Freund, H. J. (1990). Validation of perisylvian and calcarine anatomic landmarks within stereotaxic proportional coordinates. American Journal of Neuroradiology, 11, 1123–1130.PubMedGoogle Scholar
  53. Steinmetz, H., Rademacher, J., Huang, Y., Zilles, K., Thron, A., & Freund, H. J. (1990). Cerebral asymmetry: MR planimetry of the human planum temporale. Journal of Computer Assisted Tomography, 13, 996–1005.CrossRefGoogle Scholar
  54. Suzuki, K. (1972). Chemistry and metabolism of brain lipids. In R. W. Albers, G. J. Siegel, R. Katzman, & B. W. Agranoff (Eds.), Basic neurochemistry (1st ed., pp. 207–225). Boston: Little, Brown and Co.Google Scholar
  55. Tailarach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical Publishers, Inc.Google Scholar
  56. Van Balen, R., Kate, T., Koelma, D., Smeulders, A., & Groen, F. [computer software] (1991). Scilimage: A multi-image interactive image processing environment. Amsterdam: University of Amsterdam.Google Scholar
  57. Vannier, M. W., Butterfield, R. L., Jordan, D., Murphy, W. A., Levitt, R. G., & Gado, M. (1985). Multispectral analysis of magnetic resonance images. Radiology, 154, 221–224.PubMedGoogle Scholar
  58. VoxBlast [computer software] (1993). Fairfield, IA: VayTek, Inc.Google Scholar
  59. Watson, C., Andermann, F., Gloor, P., Jones-Gotman, M., Peters, T., Olivier, A., Melanson, D., & Leroux, R. T. (1992). Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging. Neurology, 42, 1743–1750.PubMedCrossRefGoogle Scholar
  60. Wehrli, F. W., MacFall, M. R., Glover, G. H., Grigsby, N., Haughton, V., & Johanson, J. (1984). The dependence of nuclear magnetic resonance (NMR) image contrast on intrinsic and pulse timing parameters. Magnetic Resonance Imaging, 2, 3–16.PubMedCrossRefGoogle Scholar
  61. Wehrli, F. W., MacFall, J. R. Shutts, D., Breger, R. & Herfkens, R. J. (1984). Mechanisms of contrast in NMR imaging. Journal of Computer Assisted Tomography, 8, 369–380.PubMedCrossRefGoogle Scholar
  62. Willerman, L., Schultz, R., Rutledge, N., & Bigler, E. (1991). In vivo brain size and intelligence. Intelligence, 15, 223–228.CrossRefGoogle Scholar
  63. Wood, M. L., & Henkelman, R. M. (1985). Truncation artifacts in magnetic resonance imaging. Magnetic Resonance in Medicine, 2, 517–526.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Robert T. Schultz
    • 1
  • Amit Chakraborty
    • 2
  1. 1.Child Study CenterYale UniversityNew HavenUSA
  2. 2.Department of Electrical EngineeringYale UniversityNew HavenUSA

Personalised recommendations