Disorders of the Serum Electrolytes, Acid-Base Balance, and Renal Function in Alcoholism

  • Thomas O. Pitts
  • David H. Van Thiel
Part of the Recent Developments in Alcoholism book series (RDIA, volume 4)

Abstract

This chapter reviews the disturbances of the serum sodium and potassium concentrations, acid-base imbalances, and acute renal dysfunction that are seen frequently in alcoholic patients. The hyponatremia common in decompensated cirrhotics is caused by an impairment of renal free water clearance and concomitant water ingestion. Excessive proximal renal tubular sodium reabsorption and nonosmotic Vasopressin release underlie the defect in renal water excretion in cirrhosis. Restriction of water intake is the principal therapeutic measure for hyponatremia. Hypokalemia is common in alcoholics but when observed does not always represent true potassium depletion. Although most cirrhotics have a diminished total body potassium content, intracellular potassium concentration is usually normal. In some patients gastrointestinal and renal potassium losses and nutritional potassium deficiency may cause true potassium depletion. Respiratory and metabolic alkalosis are the acid-base disturbances seen most frequently in alcoholics. Acidosis is relatively uncommon and is usually due to renal insufficiency, lactic acid or keto-acid accumulation. Toxin ingestion (methanol, ethylene glycol, or isopropanol) may also cause severe acidosis. Rhabdomyolysis, common in severe alcoholism, may produce various electrolyte disturbances and acute renal failure. The prognosis for recovery is good although temporary dialysis may be necessary.

Keywords

Toxicity Pancreatitis Ketone Pyruvate Bicarbonate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eisenmenger WJ, Blondheim SH, Bongiovanni AM, et al.: Electrolyte studies on patients with cirrhosis of the liver. J Clin Invest 29:1491–1499, 1950.PubMedCrossRefGoogle Scholar
  2. 2.
    Arroyo V, Rodes J, Gutierrez-Lizarraga MA, et al.: Prognostic value of spontaneous hyponatremia in cirrhosis with ascites. Am J Dig Dis 21:240–256, 1976.CrossRefGoogle Scholar
  3. 3.
    Papper S, Saxon L: The diuretic response to administered water in patients with liver disease. II. Laennec’s cirrhosis of the liver. Arch Int Med 103:750–757, 1959.CrossRefGoogle Scholar
  4. 4.
    Shear L, Hall PW, Gabuzda GJ: Renal failure in patients with cirrhosis of the liver. II. Factors influencing maximal urinary flow rate. Am J Med 39:199–209, 1965.PubMedCrossRefGoogle Scholar
  5. 5.
    Chiandussi L, Bartoli E, Arras S: Reabsorption of sodium in the proximal renal tubule in cirrhosis of the liver. Gut 19:497–503, 1978.PubMedCrossRefGoogle Scholar
  6. 6.
    Wilkinson SP, Jowett TP, Slater DH, et al.: Renal sodium retention in cirrhosis: Relation to aldosterone and nephron site. Clin Sci 56:169–177, 1979.PubMedGoogle Scholar
  7. 7.
    Vaamonde CA, Vaamonde LS, Presser JI, et al.: The role of Vasopressin and urea in the renal concentrating defect of patients with cirrhosis of the liver. Clin Sci 41:441–452, 1971.PubMedGoogle Scholar
  8. 8.
    Arroyo V, Rodes J: Treatment of ascites. A rational approach to the treatment of ascites. Postgrad Med J 51:558–562, 1975.PubMedCrossRefGoogle Scholar
  9. 9.
    Klingler EL Jr, Vaamonde CA, Vaamonde LS, et al.: Renal function changes in cirrhosis of the liver. Arch Int Med 125:1010–1015, 1970.CrossRefGoogle Scholar
  10. 10.
    Perez-Ayuso RM, Arroyo V, Camps J, et al.: Evidence that renal Prostaglandins are involved in renal water metabolism in cirrhosis. Kidney Int 26:72–80, 1984.PubMedCrossRefGoogle Scholar
  11. 11.
    Padfield PL, Morton JJ: Application of a sensitive radioimmunoassay for plasma arginine Vasopressin to pathological conditions in man. Clin Sci 47: 16p–17p, 1974.Google Scholar
  12. 12.
    Wagner H, Maier V, Franz HE: Improved method and its clinical application of a radioimmunoassay of arginine Vasopressin in human serum. Horm Metabl Res 9:223–227, 1977.CrossRefGoogle Scholar
  13. 13.
    Bichet D, Szatalowicz V, Chaimovitz C, et al.: Role of Vasopressin in abnormal water excretion in cirrhotic patients. Ann Int Med 96:413–417, 1982.PubMedCrossRefGoogle Scholar
  14. 14.
    Anderson RJ, Cronin RE, McDonald KM, et al.: Mechanisms of portal hypertension-induced alterations in renal hemodynamics, renal water excretion, and renin secretion. J Clin Invest 58:964–970, 1976.PubMedCrossRefGoogle Scholar
  15. 15.
    Better OS, Aisenbrey GA, Berl T, et al.: Role of antidiuretic hormone in impaired urinary dilution associated with chronic bile-duct ligation. Clin Sci 58:493–500, 1980.PubMedGoogle Scholar
  16. 16.
    Linas SL, Anderson RJ, Guggenheim SJ, et al.: Role of Vasopressin in impaired water excretion in conscious rats with experimental cirrhosis. Kidney Int 20:173–180, 1981.PubMedCrossRefGoogle Scholar
  17. 17.
    Bichet DG, Groves BM, Schrier RW: Mechanisms of improvement of water and sodium excretion by immersion in decompensated cirrhotic patients. Kidney Int 24:788–794, 1983.PubMedCrossRefGoogle Scholar
  18. 18.
    Skowsky R, Riestra J, Martinez I, et al.: Arginine Vasopressin (AVP) kinetics in hepatic cirrhosis. Clin Res 24:101A, 1976.Google Scholar
  19. 19.
    Kelleher SP, Berl T, Schrier RW: Antidiuretic hormone, in Dunn M (ed): Renal Endocrinology. Baltimore/London, Williams and Wilkins, 1983, pp 224–268.Google Scholar
  20. 20.
    Shade RE, Share L: Metabolic clearance of immunoreactive Vasopressin and immunoreactive (131 I) iodo Vasopressin in the hypophysectomized dog. Endocrinology 99:1199–1206, 1976.PubMedCrossRefGoogle Scholar
  21. 21.
    Ardaillou R, Benmansour M, Rondeau E, et al.: Metabolism and secretion of antidiuretic hormone in patients with renal failure, cardiac insufficiency, and liver insufficiency, in Bach JF, Crosnier J, Funck-Brentano JL, et al.: (eds): Advances in Nephrology, vol 13. Chicago, Yearbook Medical Publishers, 1984, pp 35–49.Google Scholar
  22. 22.
    Papper S, Belsky JL, Bleifer KH: Renal failure in Laennec’s cirrhosis of the liver. I. Description of clinical and laboratory features. Ann Int Med 51:759–773, 1959.PubMedCrossRefGoogle Scholar
  23. 23.
    Baldus WP, Feichter RN, Summerskill WH, et al.: The kidney in cirrhosis II. Disorders of renal function. Ann Int Med 60:366–377, 1964.PubMedCrossRefGoogle Scholar
  24. 24.
    Bosch J, Arroyo V, Betriu A, et al.: Hepatic hemodynamics and the renin-angiotensin-aldosterone system in cirrhosis. Gastroenterology 78:92–99, 1980.PubMedGoogle Scholar
  25. 25.
    Lauson HD: Metabolism of antidiuretic hormones. Am J Med 42:713–744, 1967.PubMedCrossRefGoogle Scholar
  26. 26.
    Rabkin R, Ghazeleh S, Share L, et al.: Removal of immunoreactive arginine Vasopressin by the perfused rat liver. Endocrinology 106:930–934, 1980.PubMedCrossRefGoogle Scholar
  27. 27.
    Aziz O, Schmidt W: Elimination of Vasopressin by the normal and the damaged liver. Pflugers Arch 367:165–168, 1976.PubMedCrossRefGoogle Scholar
  28. 28.
    Bernstein SH, Weston RE, Ross G, et al.: Studies on intravenous water diuresis and nicotine and pitressin antidiuresis in normal subjects and patients with liver disease. J Clin Invest 32:422–427, 1953.CrossRefGoogle Scholar
  29. 29.
    Bichet DG, Schrier RW: Role of Vasopressin in cardiac, pulmonary, hepatic, and adrenal disorders, in Bach JF, Crosnier J, Funck-Brentano JL, et al.: Advances in Nephrology, vol 13. Chicago, Year Book Medical Publishers, 1984, pp 51–74.Google Scholar
  30. 30.
    Eggleton MG: The diuretic action of alcohol in man. J Physiol 101:172–191, 1942.PubMedGoogle Scholar
  31. 31.
    DeTroyer A, Pilloy W, Broeckaert I, et al.: Demeclocycline treatment of water retention in cirrhosis. Ann Int Med 85:336–337, 1976.CrossRefGoogle Scholar
  32. 32.
    Perez-Ayuso RM, Arroyo V, Camps J, et al.: Effect of demeclocycline on renal function and urinary Prostaglandin E2 and kallikrein in hyponatremic cirrhotics. Nephron 36:30–37, 1984.PubMedCrossRefGoogle Scholar
  33. 33.
    Anderson RJ, Berl T, McDonald KM, et al.: Evidence for an in vivo antagonism between Vasopressin and Prostaglandin in the mammalian kidney. J Clin Invest 56:420–426, 1975.PubMedCrossRefGoogle Scholar
  34. 34.
    Grantham JJ, Orloff J: Effect of Prostaglandin E1 on the permeability response of the isolated collecting tubule to Vasopressin, adenosine 3′,5′-monophosphate, and theophylline. J Clin invest 47:1154–1161, 1968.PubMedCrossRefGoogle Scholar
  35. 35.
    Kramer HJ, Glanzer K, Dusing R: Role of Prostaglandins in the regulation of renal water. Kidney Int 19:851–859, 1981.PubMedCrossRefGoogle Scholar
  36. 36.
    Walker LA, Whorton AR, Smigel M, et al.: Antidiuretic hormone increases renal prostaglandin synthesis in vivo. Am J Physiol 235:F180–F185, 1978.PubMedGoogle Scholar
  37. 37.
    Schedl HP, Bartter FC: An explanation for and experimental correction of the abnormal water diuresis in cirrhosis. J Clin Invest 39:248–261, 1960.PubMedCrossRefGoogle Scholar
  38. 38.
    Vlahcevic ZR, Adham NF, Jick H, et al.: Renal effects of acute expansion of plasma volume in cirrhosis. N Engl J Med 272:387–391, 1965.PubMedCrossRefGoogle Scholar
  39. 39.
    Epstein M, Pins DS, Schneider N, et al.: Determinants of deranged sodium and water homeostasis in decompensated cirrhosis. J Lab Clin Med 87:822–839, 1976.PubMedGoogle Scholar
  40. 40.
    Naccarato R, Messa P, D’Angelo A, et al.: Renal handling of sodium and water in early chronic liver disease. Gastroenterology 81:205–210, 1981.PubMedGoogle Scholar
  41. 41.
    Epstein M, Weitzman RE, Preston S, et al.: Relationship between plasma arginine Vasopressin and renal water handling in decompensated cirrhosis. Mineral Electrolyte Metab 10:155–165, 1984.Google Scholar
  42. 42.
    Reznick RK, Langer B, Taylor BR, et al.: Hyponatremia and arginine Vasopressin secretion in patients with refractory hepatic ascites undergoing peritoneovenous shunting. Gastroenterology 84:713–718, 1983.PubMedGoogle Scholar
  43. 43.
    Berliner RW, Davidson DG: Production of hypertonic urine in the absence of pituitary antidiuretic hormone. J Clin Invest 36:1416–1427, 1957.PubMedCrossRefGoogle Scholar
  44. 44.
    Schrier RW, Lehman D, Zacherle B, et al.: Effect of furosemide on free water excretion in edematous patients with hyponatremia. Kidney Int 3:30–34, 1973.PubMedCrossRefGoogle Scholar
  45. 45.
    Szatalowicz VL, Miller PD, Lacher JW, et al.: Comparative effect of diuretics on renal water excretion in hyponatraemic oedematous disorders. Clin Sci 62:235–238, 1982.PubMedGoogle Scholar
  46. 46.
    Ring-Larsen H, Clausen E, Ranek L: Peritoneal dialysis in hyponatremia due to liver failure. Scand J Gastroenterol 8:33–40, 1973.PubMedGoogle Scholar
  47. 47.
    Rubini ME, Kleeman CR, Lamdin E: Studies on alcoholic diuresis. I. The effect of ethyl alcohol ingestion on water, electrolyte and acid-base metabolism. J Clin Invest 34:439–447, 1955.PubMedCrossRefGoogle Scholar
  48. 48.
    Kalbfleisch JM, Lindeman RD, Ginn HE, et al.: Effects of ethanol administration on urinary excretion of magnesium and other electrolytes in alcoholic and normal subjects. J Clin Invest 42:1471–1475, 1963.PubMedCrossRefGoogle Scholar
  49. 49.
    Helderman JH, Vestal RE, Rowe JW, et al.: The response of arginine Vasopressin to intravenous ethanol and hypertonic saline in man: the impact of aging. J Gerontol 33:39–47, 1978.PubMedCrossRefGoogle Scholar
  50. 50.
    Beard JD, Barlow G, Overman RR: Body fluids and blood electrolytes in dogs subjected to chronic ethanol administration. J Pharm Exp Ther 148:348–355, 1965.Google Scholar
  51. 51.
    Beard JD, Knott DH: Fluid and electrolyte balance during acute withdrawal in chronic alcoholic patients. J Am Med Assoc 204:133–139, 1968.CrossRefGoogle Scholar
  52. 52.
    Klatsky AL, Friedman GD, Siegelaub AB, et al.: Alcohol consumption and blood pressure. Kaiser-Permanente multiphasic health examination data. N Engl J Med 296:1194–1200, 1977.PubMedCrossRefGoogle Scholar
  53. 53.
    Chan TCK, Sutter MC: Ethanol consumption and blood pressure. Life Sci 33:1965–1973, 1983.PubMedCrossRefGoogle Scholar
  54. 54.
    Kaysen G, Noth RH: The effects of alcohol on blood pressure and electrolytes. Med Clin N Am 68:221–246, 1984.PubMedGoogle Scholar
  55. 55.
    Demanet JC, Bonnyns M, Bleiberg H, et al.: Coma due to water intoxication in beer drinkers. Lancet 2:1115–1117, 1971.PubMedCrossRefGoogle Scholar
  56. 56.
    Hilden T, Svendsen TL: Electrolyte disturbances in beer drinkers. A specific “hypo-osmolality syndrome.” Lancet 2:245–246, 1975.PubMedCrossRefGoogle Scholar
  57. 57.
    Casey TH, Summerskill WHJ, Orvis AL: Body and serum potassium in liver disease. 1. Relationship to hepatic function and associated factors. Gastroenterology 48:198–207, 1965.PubMedGoogle Scholar
  58. 58.
    Delwaide PA: Body potassium measurements by whole-body counting: screening of patient populations. J Nucl Med 14:40–48, 1973.PubMedGoogle Scholar
  59. 59.
    Soler NG, Jain S, James H, et al.: Potassium status of patients with cirrhosis. Gut 17:152–157, 1976.PubMedCrossRefGoogle Scholar
  60. 60.
    Knochel JP: Hypophosphatemia. Clin Nephrol 7:131–137, 1977.PubMedGoogle Scholar
  61. 61.
    Aikawa JK, Felts JH Jr, Harrell GT Jr: Alterations in the body potassium content in cirrhosis of the liver. Gastroenterology 24:437–443, 1953.PubMedGoogle Scholar
  62. 62.
    Schober O, Maris P, Schmidt FW, et al.: Total body water, extracellular water, plasma volume, and total body potassium in cirrhosis of the liver. Klin Wschr 57:757–761, 1979.PubMedCrossRefGoogle Scholar
  63. 63.
    DeDeuxchaisnes N, Collet RA, Busset R, et al.: Exchangeable potassium in wasting, amyotrophy, heart-disease, and cirrhosis of the liver. Lancet 1:681–687, 1961.CrossRefGoogle Scholar
  64. 64.
    Vetter WR, Cohn LH, Reichgott M: Hypokalemia and electrocardiographic abnormalities during acute alcohol withdrawal. Arch Int Med 120:536–541, 1967.CrossRefGoogle Scholar
  65. 65.
    Wadstein J, Skude G: Does hypokalaemia precede delirium tremens? Lancet 2:549–550, 1978.PubMedCrossRefGoogle Scholar
  66. 66.
    Mas A, Bosch J, Piera C, et al.: Intracellular and exchangeable potassium in cirrhosis. Evidence against the occurrence of potassium depletion in cirrhosis with ascites. Dig Dis Sci 26:723–727, 1981.PubMedCrossRefGoogle Scholar
  67. 67.
    Kessler E, Levy MR, Allen RL: Red cell electrolytes in patients with edema. J Lab Clin Med 57:32–41, 1961.PubMedGoogle Scholar
  68. 68.
    Astrup J, Prytz H, Thomsen AC, et al.: Red cell sodium and potassium contents in liver cirrhosis. Gastroenterology 78:530–534, 1980.PubMedGoogle Scholar
  69. 69.
    Strub IH, Talso PJ, Kirsner JB: Intracellular and extracellular fluid and electrolyte alterations in cirrhosis of the liver with edema and ascites. Gastroenterology 28:163–175, 1955.PubMedGoogle Scholar
  70. 70.
    Knochel JP, Bilbrey GL, Fuller TJ, et al.: The muscle cell in chronic alcoholism: the possible role of phosphate depletion in alcoholic myopathy. Ann NY Acad Sci 252:274–286, 1975.PubMedCrossRefGoogle Scholar
  71. 71.
    Alam AN, Wheeler P, Wilkinson SP, et al.: Changes in the electrolyte content of leucocytes at different clinical stages of cirrhosis. Gut 19:650–654, 1978.PubMedCrossRefGoogle Scholar
  72. 72.
    Maschia G, D’Angelo A, Sirigu F, et al.: Muscle biopsy studies in liver cirrhosis. Scand J Gastroenterol 6:363–368, 1971.CrossRefGoogle Scholar
  73. 73.
    Kalant H, Mons W, Mahon MA: Acute effects of ethanol on tissue electrolytes in the rat. Can J Physiol Pharmacol 44:1–12, 1966.PubMedCrossRefGoogle Scholar
  74. 74.
    Anderson R, Cohen M, Haller R, et al.: Skeletal muscle phosphorus and magnesium deficiency in alcoholic myopathy. Mineral Electrolyte Metab 4:106–112, 1980.Google Scholar
  75. 75.
    Knochel JP, Schlein EM: On the mechanism of rhabdomyolysis in potassium depletion. J Clin Invest 51:1750–1758, 1972.PubMedCrossRefGoogle Scholar
  76. 76.
    Cronin RE, Knochel JP: The consequences of potassium deficiency, in Brenner BM, Stein JH (eds): Contemporary Issues in Nephrology, vol 2. New York, Churchill Livingstone, 1978, pp 205–231.Google Scholar
  77. 77.
    Rosoff L Jr, Zia P, Reynolds T, et al.: Studies of renin and aldosterone in cirrhotic patients with ascites. Gastroenterology 69:698–705, 1975.PubMedGoogle Scholar
  78. 78.
    Epstein M, Levinson R, Sancho J, et al.: Characterization of the renin-aldosterone system in decompensated cirrhosis. Circ Res 41:818–829, 1977.PubMedCrossRefGoogle Scholar
  79. 79.
    Linkola J, Fyhrquist F, Ylikahri R: Renin, aldosterone and cortisol during ethanol intoxication and hangover. Acta Physiol Scand 106:75–82, 1979.PubMedCrossRefGoogle Scholar
  80. 80.
    Vesin P: Potassium metabolism and diuretic administration in liver cirrhosis. Postgrad Med J 51:545–548, 1975.PubMedCrossRefGoogle Scholar
  81. 81.
    Epstein M: Aldosterone in liver disease, in Epstein M (ed): The Kidney in Liver Disease, ed 2. New York, Elsevier, 1983, pp 370–394.Google Scholar
  82. 82.
    McCollister R, Prasad AS, Doe RP, et al.: Normal renal magnesium clearance and the effect of water loading, chlorothiazide and ethanol on magnesium excretion. J Lab Clin Med 52:928, 1958.Google Scholar
  83. 83.
    Whang R, Morosi HJ, Rodgers D, Reyes R: The influence of sustained magnesium deficiency on muscle potassium repletion. J Lab Clin Med 70:895–902, 1967.PubMedGoogle Scholar
  84. 84.
    Shear L, Bonkowsky HL, Gabuzda GJ: Renal tubular acidosis in cirrhosis. A determinant of susceptibility to recurrent hepatic precoma. N Engl J Med 280:1–7, 1969.PubMedCrossRefGoogle Scholar
  85. 85.
    Lieber CS: General nutritional status in the alcoholic, including disorders of minerals and vitamins, in Smith LH, Jr (ed): Major Problems in Internal Medicine, vol 22: Medical Disorders of Alcoholism, Pathogenesis and Treatment. Philadelphia, WB Saunders, 1982, pp 551–568.Google Scholar
  86. 86.
    Thomson AD: Alcohol and nutrition. Clin Endocrinol Metab 7:405–428, 1978.PubMedCrossRefGoogle Scholar
  87. 87.
    Schultze RG, Nissenson AR: Potassium: Physiology and pathophysiology, in Maxwell MH, Kleeman CR (eds): Clinical Disorders of Fluid and Electrolyte Metabolism, ed 3. New York, McGraw-Hill, 1980, pp 113–143.Google Scholar
  88. 88.
    Robin ED, Whaley RD, Crump CH, et al.: The nature of the respiratory acidosis of sleep and of the respiratory alkalosis of hepatic coma. J Clin Invest 36:924, 1957.Google Scholar
  89. 89.
    Heinemann HD, Emirgil C, Mijnssen JP: Hyperventilation and arterial hypoxemia in cirrhosis of the liver. Am J Med 28:239–246, 1960.PubMedCrossRefGoogle Scholar
  90. 90.
    Abelmann WH, Kramer GE, Verstraeten JM, et al.: Cirrhosis of the liver and decreased arterial oxygen saturation. Arch Int Med 108:102–108, 1961.CrossRefGoogle Scholar
  91. 91.
    Karetzky MS, Mithoefer JC: The cause of hyperventilation and arterial hypoxia in patients with cirrhosis of the liver. Am J Med Sci 244:797–804, 1967.CrossRefGoogle Scholar
  92. 92.
    Sereny G, Rapoport A, Husdan H: The effect of alcohol withdrawal on electrolyte and acid-base balance. Metabolism 15:896–904, 1966.PubMedCrossRefGoogle Scholar
  93. 93.
    Bellville JW, Swanson GD, Miyake T, et al.: Respiratory stimulation observed following ethanol ingestion. West J Med 124:423–425, 1976.PubMedGoogle Scholar
  94. 94.
    Casey TH, Summerskill WHJ, Bickford RG, et al.: Body and serum potassium in liver disease. II. Relationships to arterial ammonia, blood pH, and hepatic coma. Gastroenterology 48:208–215, 1965.PubMedGoogle Scholar
  95. 95.
    Mendelson JH: Biologic concomitants of alcoholism. N Engl J Med 283:71–81, 1970.CrossRefGoogle Scholar
  96. 96.
    Ring-Larsen H, Hesse B, Henriksen JH, et al.: Sympathetic nervous activity and renal and systemic hemodynamics in cirrhosis: Plasma norepinephrine concentration, hepatic extraction and renal release. Hepatology 2:304–310, 1982.PubMedCrossRefGoogle Scholar
  97. 97.
    Keller U, Gerber PPG, Buhler FR, et al.: Role of the splanchnic bed in extracting circulating adrenaline and noradrenaline in normal subjects and in patients with cirrhosis of the liver. Clin Sci 67:45–49, 1984.PubMedGoogle Scholar
  98. 98.
    Clausen T, Flatman JA: The effect of catecholamines on Na-K and membrane potential in rat soleus muscle. J Physiol 270:383–414, 1977.PubMedGoogle Scholar
  99. 99.
    Vick RL, Todd EP, Luedke DW: Epinephrine-induced hypokalemia: Relation to liver and skeletal muscle. J Pharmacol Exp Ther 181:139–146, 1972.PubMedGoogle Scholar
  100. 100.
    Conn HO: Cirrhosis and diabetes. IV. Effect of potassium chloride administration on glucose and insulin metabolism. Am J Med Sci 259:394–404, 1970.PubMedCrossRefGoogle Scholar
  101. 101.
    Podolsky S, Zimmerman HJ, Burrows BA, et al.: Potassium depletion in hepatic cirrhosis. A reversible cause of impaired growth-hormone and insulin response to stimulation. N Engl J Med 288:644–648, 1973.PubMedCrossRefGoogle Scholar
  102. 102.
    Kunin AS, Surawicz B, Sims EAH: Decrease in potassium concentrations and appearance of cardiac arrhythmias during infusion of potassium with glucose in potassium-depleted patients. N Engl J Med 266:228–233, 1962.PubMedCrossRefGoogle Scholar
  103. 103.
    Clausen T, Hansen O: Active Na-K transport and the rate of ouabain binding. The effect of insulin and other stimuli on skeletal muscle and adipocytes. J Physiol 270:415–430, 1977.PubMedGoogle Scholar
  104. 104.
    Harter HR, Santiago JV, Rutherford WE, et al.: The relative roles of calcium, phosphorus, and parathyroid hormone in glucose-and tolbutamide-mediated insulin release. J Clin Invest 58:359–367, 1976.PubMedCrossRefGoogle Scholar
  105. 105.
    Tannen RL: Relationship of renal ammonia production and potassium homeostasis. Kidney Int 11:453–465, 1977.PubMedCrossRefGoogle Scholar
  106. 106.
    Better OS, Goldschmid Z, Chaimowitz C, et al.: Defect in urinary acidification in cirrhosis. The role of excessive tubular reabsorption of sodium in its etiology. Arch Int Med 130:77–83, 1972.CrossRefGoogle Scholar
  107. 107.
    Hulter HN, Sebastian A, Sigala JF, et al.: Pathogenesis of renal hyperchloremic acidosis resulting from dietary potassium restriction in the dog: Role of aldosterone. Am J Physiol 238:F79–F91, 1980.PubMedGoogle Scholar
  108. 108.
    Baertl JM, Sancetta SM, Gabuzda GJ: Relation of acute potassium depletion to renal ammonium metabolism in patients with cirrhosis. J Clin Invest 42:696–706, 1963.PubMedCrossRefGoogle Scholar
  109. 109.
    Gabuzda GJ, Hall PW III: Relation of potassium depletion to renal ammonium metabolism and hepatic coma. Medicine 45:481–490, 1966.CrossRefGoogle Scholar
  110. 110.
    Naranjo CA, Pontigo E, Valenegro C, et al.: Furosemide-induced adverse reactions in cirrhosis of the liver. Clin Pharmacol Ther 25:154–160, 1979.PubMedGoogle Scholar
  111. 111.
    Martin JB, Craig JW, Eckel RE, et al.: Hypokalemic myopathy in chronic alcoholism. Neurology 21:1160–1168, 1971.PubMedCrossRefGoogle Scholar
  112. 112.
    Rubenstein AE, Wainapel SF: Acute hypokalemic myopathy in alcoholism. A clinical entity. Arch Neurol 34:553–555, 1977.PubMedCrossRefGoogle Scholar
  113. 113.
    Haller RG, Knochel JP: Skeletal muscle disease in alcoholism. Med Clin N Am 68:91–103, 1984.PubMedGoogle Scholar
  114. 114.
    Hed R, Lundmark C, Fahlgren H, et al.: Acute muscular syndrome in chronic alcoholism. Acta Med Scand 171:585–599, 1962.PubMedCrossRefGoogle Scholar
  115. 115.
    Perkoff GT, Dioso MM, Bleisch V, et al.: A spectrum of myopathy associated with alcoholism. I. Clinical and laboratory features. Ann Int Med 67:481–492, 1967.CrossRefGoogle Scholar
  116. 116.
    Ryback RS, Eckardt MJ, Pautler CP: Clinical relationships between serum phosphorus and other blood chemistry values in alcoholics. Arch Int Med 140:673–677, 1980.CrossRefGoogle Scholar
  117. 117.
    Gabow PA, Moore S, Schrier RW: Sprionolactone-induced hyperchloremic acidosis in cirrhosis. Ann Int Med 90:338–340, 1979.PubMedCrossRefGoogle Scholar
  118. 118.
    Wolfe SM, Victor M: The relationship of hypomagnesemia and alkalosis to alcohol withdrawal symptoms. Ann NY Acad Sci 162:973–984, 1969.PubMedCrossRefGoogle Scholar
  119. 119.
    Victor M: The role of hypomagnesemia and respiratory alkalosis in the genesis of alcohol-withdrawal symptoms. Ann NY Acad Sci 215:235–248, 1973.PubMedCrossRefGoogle Scholar
  120. 120.
    Mulhausen R, Eichenholz A, Blumentals A: Acid-base disturbances in patients with cirrhosis of the liver. Medicine 46:185–189, 1967.PubMedCrossRefGoogle Scholar
  121. 121.
    Pande JN, Guleria JS: Acid-base and electrolyte disturbances in hepatic coma. J Assoc Phys India 17:17–23, 1969.Google Scholar
  122. 122.
    Record CO, Iles RA, Cohen RD, et al.: Acid-base and metabolic disturbances in fulminant hepatic failure. Gut 16:144–149, 1975.PubMedCrossRefGoogle Scholar
  123. 123.
    Prytz H, Thomsen AC: Acid-base status in liver cirrhosis. Disturbances in stable, terminal and porta-caval shunted patients. Scand J Gastroenterol 11:249–256, 1976.PubMedGoogle Scholar
  124. 124.
    Newman JH, Neff TA, Ziporin P: Acute respiratory failure associated with hypophosphatemia. N Engl J Med 296:1101–1103, 1977.PubMedCrossRefGoogle Scholar
  125. 125.
    Johnstone RE, Reier CE: Acute respiratory effects of ethanol in man. Clin Pharmacol Ther 14:501–508, 1973.PubMedGoogle Scholar
  126. 126.
    Sahn SA, Lakshminarayan S, Pierson DJ, et al.: Effect of ethanol on the ventilatory responses to oxygen and carbon dioxide in man. Clin Sci 49:33–38, 1975.Google Scholar
  127. 127.
    Williams MH Jr: Hypoxemia due to venous admixture in cirrhosis of the liver. J Appl Physiol 15:253–254, 1960.PubMedGoogle Scholar
  128. 128.
    Reinicke V, Friis T, Mullertz S: Respiratory alkalosis and decreased oxygen saturation of arterial blood in patients with acute and chronic hepatitis. Scand J Clin Lab Invest 15:29–36, 1963.PubMedCrossRefGoogle Scholar
  129. 129.
    Kardel T, Rasmussen SN: Blood gases and acid-base disturbances of arterial blood in chronic liver disease. Scand J Clin Lab Invest 31:307–309, 1973.PubMedCrossRefGoogle Scholar
  130. 130.
    Snell RE, Luchsinger PC: The relation of arterial hypoxemia to the hyperventilation of chronic liver disease. Am J Med Sci 245:289–292, 1963.PubMedGoogle Scholar
  131. 131.
    Roberts KE, Thompson EG III, Poppell JW, et al.: Respiratory alkalosis accompanying ammonium toxicity. J Appl Physiol 9:367–370, 1956.PubMedGoogle Scholar
  132. 132.
    Wichser J, Kazemi H: Ammonia and ventilation: Site and mechanism of action. Resp Physiol 20:363–406, 1974.CrossRefGoogle Scholar
  133. 133.
    Bosch JP, Goldstein MH, Levitt MF, et al.: Effect of chronic furosemide administration on hydrogen and sodium excretion in the dog. Am J Physiol 232:F397–F404, 1977.PubMedGoogle Scholar
  134. 134.
    Lief PD, Mutz BF, Bank N: Diuretics stimulate H+ secretion in turtle urinary bladder. J Clin Invest 65:1095–1103, 1980.PubMedCrossRefGoogle Scholar
  135. 135.
    Narins RG, Goldberg M: Renal tubular acidosis: Pathophysiology, diagnosis and treatment. DM23:1–66, 1977.PubMedGoogle Scholar
  136. 136.
    Smith PM, Middleton JE, Williams R: Renal tubular acidosis and cirrhosis. Postgrad Med J 43:439–442, 1967.PubMedCrossRefGoogle Scholar
  137. 137.
    Oster JR, Hotchkiss JL, Carbon M, et al.: Abnormal renal acidification in alcoholic liver disease. J Lab Clin Med 85:987–1000, 1975.PubMedGoogle Scholar
  138. 138.
    Caregaro L, Lauro S, Ricci G, et al.: Distal renal tubular acidosis in hepatic cirrhosis: Clinical and pathogenetic study. Clin Nephrol 15:143–147, 1981.PubMedGoogle Scholar
  139. 139.
    Klahr S, Tripathy K, Lotero H: Renal regulation of acid-base balance in malnourished man. Am J Med 48:325–331, 1970.PubMedCrossRefGoogle Scholar
  140. 140.
    Kohaut EG, Klish WJ, Beachler CW, et al.: Reduced renal acid excretion in malnutrition: a result of phosphate depletion. Am J Clin Nutr 30:861–867, 1977.PubMedGoogle Scholar
  141. 141.
    Gold LW, Massry SG, Arieff AI, et al.: Renal bicarbonate wasting during phosphate depletion. J Clin Invest 52:2556–2562, 1973.PubMedCrossRefGoogle Scholar
  142. 142.
    Emmett M, Goldfarb S, Agus ZS, et al.: The pathophysiology of acid-base changes in chronically phosphate-depleted rats. J Clin Invest 59:294–298, 1977.CrossRefGoogle Scholar
  143. 143.
    Hulter HN: Hypophosphatemia impairs the renal defense against metabolic acidosis. Kidney Int 26:302–307, 1984.PubMedCrossRefGoogle Scholar
  144. 144.
    Huckabee WE: Abnormal resting blood lactate. I. The significance of hyperlactatemia in hospitalized patients. Am J Med 30:833–839, 1961.CrossRefGoogle Scholar
  145. 145.
    Park R, Arieff AI: Lactic acidosis. Adv Int Med 25:33–68, 1980.Google Scholar
  146. 146.
    Heinig RE, Clarke EF, Waterhouse C: Lactic acidosis and liver disease. Arch Intern Med 139:1229–1232, 1979.PubMedCrossRefGoogle Scholar
  147. 147.
    Alberti KGMM, Nattrass M: Lactic acidosis. Lancet 2:25–29, 1977.PubMedCrossRefGoogle Scholar
  148. 148.
    Lieber CS, Jones DP, Losowsky MS, Davidson CS: Interrelation of uric acid and ethanol metabolism in man. J Clin Invest 41:1863–1870, 1962.PubMedCrossRefGoogle Scholar
  149. 149.
    Lieber CS: Hepatic and metabolic effects of alcohol. Gastroenterology 50:119–133, 1966.PubMedGoogle Scholar
  150. 150.
    Krebs HA: The effects of ethanol on the metabolic activities of the liver, in Weber G (ed): Advances in Enzyme Regulation, vol 6. Oxford, Pergamon Press, 1968, pp 467–480.Google Scholar
  151. 151.
    Jorfeldt L, Juhlin-Donnfelt A: The influence of ethanol on splanchnic and skeletal muscle metabolism in man. Metabolism 27:97–106, 1978.PubMedCrossRefGoogle Scholar
  152. 152.
    Kreisberg RA, Owen WC, Siegal AM: Ethanol-induced hyperlacticacidemia: inhibition of lactate utilization. J Clin Invest 50:166–174, 1971.PubMedCrossRefGoogle Scholar
  153. 153.
    Berry MN: The liver and lactic acidosis. Proc R Soc Med 60:1260–1262, 1967.PubMedGoogle Scholar
  154. 154.
    Oliva PB: Lactic acidosis. Am J Med 48:209–225, 1970.PubMedCrossRefGoogle Scholar
  155. 155.
    Lichtman MA, Miller DR, Cohen J, et al.: Reduced red cell glycolysis, 2,3-diphosphoglycerate and adenosine triphosphate concentration, and increased hemoglobin-oxygen affinity caused by hypophosphatemia. Ann Int Med 74:562–568, 1971.PubMedCrossRefGoogle Scholar
  156. 156.
    Berry MN, Scheuer J: Splanchnic lactic acid metabolism in hyperventilation, metabolic alkalosis and shock. Metabolism 16:537–547, 1967.PubMedCrossRefGoogle Scholar
  157. 157.
    Doughaday WH, Lipicky RJ, Rasinski DC: Lactic acidosis as a cause of nonketotic acidosis in diabetic patients. N Engl J Med 267:1010–1014, 1962.CrossRefGoogle Scholar
  158. 158.
    Fraley DS, Adler S, Bruns FJ, et al.: Stimulation of lactate production by administration of bicarbonate in a patient with a solid neoplasm and lactic acidosis. N Engl J Med 303:1100–1102, 1980.PubMedCrossRefGoogle Scholar
  159. 159.
    Misbin RI: Phenformin-associated lactic acidosis: Pathogenesis and treatment. Ann Int Med 87:591–595, 1977.PubMedCrossRefGoogle Scholar
  160. 160.
    Taradash MR, Jacobson LB: Vasodilator therapy of idiopathic lactic acidosis. N Engl J Med 293:468–471, 1975.PubMedCrossRefGoogle Scholar
  161. 161.
    Williams HE: Alcoholic hypoglycemia and ketoacidosis. Med Clin N Am 68:33–36, 1984.PubMedGoogle Scholar
  162. 162.
    Cooperman MT, Davidoff F, Spark R, et al.: Clinical studies of alcoholic ketoacidosis. Diabetes 23:433–439, 1974.PubMedGoogle Scholar
  163. 163.
    Dillon ES, Dyer WW, Smelo LS: Ketone acidosis in nondiabetic adults. Med Clin N Am 24:1813–1822, 1940.Google Scholar
  164. 164.
    Jenkins DW, Eckel RE, Craig JW: Alcoholic ketoacidosis. JAMA 217:177–183, 1971.PubMedCrossRefGoogle Scholar
  165. 165.
    Levy LJ, Duga J, Girgis M, et al.: Ketoacidosis associated with alcoholism in nondiabetic subjects. Ann Int Med 78:213–219, 1973.PubMedCrossRefGoogle Scholar
  166. 166.
    Fulop M, Hoberman HD: Alcoholic ketosis. Diabetes 24:785–790, 1975.PubMedCrossRefGoogle Scholar
  167. 167.
    Miller PD, Heinig RE, Waterhouse C: Treatment of alcoholic acidosis. The role of dextrose and phosphorus. Arch Int Med 138:67–72, 1978.CrossRefGoogle Scholar
  168. 168.
    Soffer A, Hamburger S: Alcoholic ketoacidosis: a review of 30 cases. JAMWA 37:106–110, 1982.PubMedGoogle Scholar
  169. 169.
    Halperin ML, Hammeke M, Josee RG, et al.: Metabolic acidosis in the alcoholic: a patho-physiologic approach. Metabolism 32:308–315, 1983.PubMedCrossRefGoogle Scholar
  170. 170.
    Lefevre A, Adler H, Lieber CS: Effect of ethanol on ketone metabolism. J Clin Invest 49:1775–1782, 1970.PubMedCrossRefGoogle Scholar
  171. 171.
    Kreisberg RS: Diabetic ketoacidosis: new concepts and trends in pathogenesis and treatment. Ann Int Med 88:681–695, 1978.PubMedCrossRefGoogle Scholar
  172. 172.
    Reichle FA, Owen OE, Golsorkhi M, Kreulen T: Hepatic metabolism in patients with alcoholic cirrhosis. Surgery 84:33–36, 1978.PubMedGoogle Scholar
  173. 173.
    Oster JR, Epstein M: Acid-base aspects of ketoacidosis. Am J Nephrol 4:137–151, 1984.PubMedCrossRefGoogle Scholar
  174. 174.
    Bennett IL Jr, Cary FH, Mitchell GL Jr, et al.: Acute methyl alcohol poisoning: a review based on experiences in an outbreak of 323 cases. Medicine 32:431–463, 1953.PubMedCrossRefGoogle Scholar
  175. 175.
    Tonning DJ, Brooks DW, Harlow CM: Acute methyl alcohol poisoning in 49 naval ratings. Can Med Assoc J 74:20–27, 1956.PubMedGoogle Scholar
  176. 176.
    Schwartz RD, Milliman RP, Billi JE, et al.: Epidemic methanol poisoning: clinical and biochemical analysis of a recent episode. Medicine 60:373–382, 1981.CrossRefGoogle Scholar
  177. 177.
    Gonda A, Gault H, Churchill D, et al.: Hemodialysis for methanol intoxication. Am J Med 64:749–758, 1978.PubMedCrossRefGoogle Scholar
  178. 178.
    Roe O: The metabolism and toxicity of methanol. Pharm Rev 7:399–412, 1955.PubMedGoogle Scholar
  179. 179.
    Cooper JR, Kini MM: Biochemical aspects of methanol poisoning. Biochem Pharmacol 11:405–416, 1962.PubMedCrossRefGoogle Scholar
  180. 180.
    Kini MM, Cooper JR: Biochemistry of methanol poisoning. III. The enzymatic pathway for the conversion of methanol to formaldehyde. Biochem Pharmacol 8:207–215, 1961.PubMedCrossRefGoogle Scholar
  181. 181.
    Blair AH, Vallee BL: Some catalytic properties of human liver alcohol dehydrogenase. Biochemistry 5:2026–2034, 1966.PubMedCrossRefGoogle Scholar
  182. 182.
    Kini MM, Cooper JR: Biochemistry of methanol poisoning. 4. The effect of methanol and its metabolites on retinal metabolism. Biochem J 82:164–172, 1962.PubMedGoogle Scholar
  183. 183.
    Martin-Amat G, McMartin KE, Hayreh SS, et al.: Methanol poisoning: ocular toxicity produced by formate. Toxicol Appl Pharmacol 45:201–208, 1978.PubMedCrossRefGoogle Scholar
  184. 184.
    McCoy HG, Cipolle RJ, Ehlers SM, et al.: Severe methanol poisoning. Application of a pharmacokinetic model for ethanol therapy and hemodialysis. Am J Med 67:804–807, 1979.PubMedCrossRefGoogle Scholar
  185. 185.
    Keyvan-Larijarni H, Tannenberg AM: Methanol intoxication. Comparison of peritoneal dialysis and hemodialysis treatment. Arch Int Med 134:293–296, 1974.CrossRefGoogle Scholar
  186. 186.
    Underwood F, Bennett WM: Ethylene glycol intoxication. Prevention of renal failure by aggressive management. JAMA 226:1453–1454, 1973.PubMedCrossRefGoogle Scholar
  187. 187.
    Parry MF, Wallach R: Ethylene glycol poisoning. Am J Med 57:143–150, 1974.PubMedCrossRefGoogle Scholar
  188. 188.
    Frommer JP, Ayus JC: Acute ethylene glycol intoxication. Am J Nephrol 2:1–5, 1982.PubMedCrossRefGoogle Scholar
  189. 189.
    Scully RE, Galdabini JJ, McNeely BU (eds): Case 38-1979. Case records of the Massachusetts General Hospital. N Engl J Med 301:650–657, 1979.Google Scholar
  190. 190.
    Peterson CD, Collins AJ, Himes JM, et al.: Ethylene glycol poisoning. Pharmacokinetics during therapy with ethanol and hemodialysis. N Engl J Med 304:21–23, 1981.PubMedCrossRefGoogle Scholar
  191. 191.
    Stokes JB III, Aueron F, Prevention of organ damage in massive ethylene glycol ingestion. JAMA 243:2065–2066, 1980.PubMedCrossRefGoogle Scholar
  192. 192.
    McCord WM, Switzer PK, Brill HH Jr: Isopropyl alcohol intoxication. South Med J 41:639–642, 1948.PubMedCrossRefGoogle Scholar
  193. 193.
    Adelson L: Fatal intoxication with isopropyl alcohol (rubbing alcohol). Am J Clin Pathol 38:144–151, 1962.PubMedGoogle Scholar
  194. 194.
    Wax J, Ellis FW, Lehman AJ: Absorption and distribution of isopropyl alcohol. J Pharmacol Exp Ther 97:229–237, 1949.PubMedGoogle Scholar
  195. 195.
    Mecikalski MB, Depner TA: Peritoneal dialysis for isopropanol poisoning. West J Med 137:322–325, 1982.PubMedGoogle Scholar
  196. 196.
    Freireich AW, Cinque TJ, Xanthaky G, et al.: Hemodialysis for isopropanol poisoning. N Engl J Med 277:699–700, 1967.PubMedCrossRefGoogle Scholar
  197. 197.
    Nordam R, Ribiere C, Rouach H, et al.: Metabolic pathways involved in the oxidation of isopropanol into acetone by the intact rat. Life Sci 13:919–932, 1973.CrossRefGoogle Scholar
  198. 198.
    Juncos L, Taguchi JT: Isopropyl alcohol intoxication. Report of a case associated with myopathy, renal failure, and hemolytic anemia. JAMA 204:186–188, 1968.CrossRefGoogle Scholar
  199. 199.
    King LH Jr, Bradley KP, Shires DL: Hemodialysis for isopropyl alcohol poisoning. JAMA 211:1855, 1970.PubMedCrossRefGoogle Scholar
  200. 200.
    Grossman RA, Hamilton RW, Morse BM, et al.: Nontraumatic rhabdomyolysis and acute renal failure. N Engl J Med 291:807–811, 1974.PubMedCrossRefGoogle Scholar
  201. 201.
    Gabow PA, Kaehny WD, Kelleher SP: The spectrum of rhabdomyolysis. Medicine 61:141–152, 1982.PubMedCrossRefGoogle Scholar
  202. 202.
    Koffler A, Friedler RM, Massry SG: Acute renal failure due to nontraumatic rhabdomyolysis. Ann Int Med 85:23–28, 1976.PubMedCrossRefGoogle Scholar
  203. 203.
    Rowland LP, Penn AS: Myoglobinuria. Med Clin N Am 56:1233–1256, 1972.PubMedGoogle Scholar
  204. 204.
    Perkoff GT, Hardy P, Velez-Garcia E: Reversible acute muscular syndrome in chronic alcoholism. N Engl J Med 274:1277–1285, 1966.PubMedCrossRefGoogle Scholar
  205. 205.
    Martin FC, Slavin G, Levi AJ: Alcoholic muscle disease. Br Med Bull 38:53–56, 1982.PubMedGoogle Scholar
  206. 206.
    Saltissi D, Parfrey PS, Curtis JR, et al.: Rhabdomyolysis and acute renal failure in chronic alcoholics with myopathy, unrelated to acute alcohol ingestion. Clin Nephrol 21:294–300, 1984.PubMedGoogle Scholar
  207. 207.
    Knochel JP: Skeletal muscle in hypophosphatemia in phosphorus deficiency, in Massry SG, Ritz E, Rapado A (eds): Advances in Experimental Medicine and Biology, vol 103. Homeostasis of Phosphate and Other Minerals. New York, Plenum Press, 1978, pp 357–366.Google Scholar
  208. 208.
    Segal AJ, Miller M, Moses AM: Hypercalcemia during the diuretic phase of acute renal failure. Ann Int Med 68:1066–1068, 1968.PubMedCrossRefGoogle Scholar
  209. 209.
    Knochel JP: Serum calcium derangements in rhabdomyolysis. N Engl J Med 304:161–163, 1981.CrossRefGoogle Scholar
  210. 210.
    Massry SG, Arieff AI, Coburn JW, et al.: Divalent ion metabolism in patients with acute renal failure; studies on the mechanism of hypocalcemia. Kidney Int 5:437–445, 1974.PubMedCrossRefGoogle Scholar
  211. 211.
    Llach F, Felsenfeld AJ, Haussler MR: The pathophysiology of altered calcium metabolism in rhabdomyolysis-induced acute renal failure. Interactions of parathyroid hormone, 25 hydroxycholecalcifercl, and 1,25-dihydroxycholecalciferol. N Engl J Med 305:117–123, 1981.PubMedCrossRefGoogle Scholar
  212. 212.
    Levine BS, Walling MW, Coburn JW: Intestinal absorption of calcium: its assessment, normal physiology, and alterations in various disease states, in Bronner F, Coburn JW (eds): Disorders of Mineral Metabolism vol 2. New York, Academic Press, 1982, pp 103–188.Google Scholar
  213. 213.
    Eneas JR, Schoenfeld PY, Humphreys MH: The effect of infusion of mannitol-sodium bicarbonate on the clinical course of myoglobinuria. Arch Int Med 139:801–805, 1979.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Thomas O. Pitts
    • 2
  • David H. Van Thiel
    • 1
  1. 1.Division of Gastroenterology, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Renal-Electrolyte Division, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations