Vaccinia Virus Hemagglutinin

  • Hisatoshi Shida
Part of the Subcellular Biochemistry book series (SCBI, volume 15)

Abstract

Several viruses agglutinate erythrocytes of various animal species. The components responsible for this phenomenon have been termed hemagglutinins (HA), which in many cases have been identified as glycoproteins present in virus envelopes. The HA titers have often been used as convenient indicators of the amounts of viruses. Recent studies on virus HA dealt not only with their structures and functions in virus replication but with the molecular mechanisms of their biosynthesis as well, applicable in general to membrane glycoproteins.

Keywords

Carbohydrate Lymphoma Attenuation Streptomyces Myeloma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D. A., and Rose, J. K., 1985, Incorporation of a charged amino acid into the membranespanning domain blocks cell surface transport but not membrane anchoring of a viral glycoprotein, Mol Cell Biol 5:1442–1448.PubMedGoogle Scholar
  2. Arita, I., and Fenner, F., 1985, Complications of smallpox vaccination, in: Vaccinia Virus as Vectors for Vaccine Antigens (J. Quinnan, ed.), pp. 49–60, Elsevier, New York.Google Scholar
  3. Bennink, J. R., Yewdell, J. W., Smith, G. L., and Moss, B., 1987, Anti-influenza virus cytotoxic T lymphocytes recognize the three viral polymerases and a nonstructural protein: Responsiveness to individual viral antigens is major histocompatibility complex controlled, J. Virol. 61:1098–1102.PubMedGoogle Scholar
  4. Bertholet, C., Drillien, R., and Wittek, R., 1985, One hundred base pairs of 5′ flanking sequence of a vaccinia virus late gene are sufficient to temporally regulate late transcription, Proc. Natl. Acad. Sci. USA 82:2096–2100.PubMedGoogle Scholar
  5. Bhavanandan, V. P., and Katlic, A. W., 1979, The interaction of wheat germ agglutinin with sialoglycoproteins: The role of sialic acid, J. Biol. Chem. 254:4000–4008.PubMedGoogle Scholar
  6. Blackman, K. E., and Bubel, H. C., 1972, Origin of the vaccinia virus hemagglutinin. J. Virol. 9:290–296.PubMedGoogle Scholar
  7. Blobel, G., Walter, P., Chang, C. N., Goldman, B. M., Erikson, A. H., and Lingappa, V. R., 1979, Translocation of proteins across membranes: The signal hypothesis and beyond, Symp. Soc. Exp. Biol. 33:9–36.PubMedGoogle Scholar
  8. Blobel, G., and Dobberstein, B., 1975, Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobin light chains on membrane bound ribosomes of murine myeloma, J. Cell Biol. 67:835–851.PubMedGoogle Scholar
  9. Blobel, G., 1980, Intracellular protein topogenesis, Proc. Natl. Acad. Sci. USA 77:1496–1500.PubMedGoogle Scholar
  10. Bole, D. G., Hendershot, L. M., and Kearney, J. F., 1986, Posttranslational association of immu-noglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas, J. Cell. Biol. 102:1558–1566.PubMedGoogle Scholar
  11. Briggs, M. S., and Gierasch, L. M., 1986, Molecular mechanisms of protein secretion: The role of the signal sequence, Adv. Protein Chem. 38:109–180.PubMedGoogle Scholar
  12. Buller, R. M. L., Smith, G. L., Cremer, K., Notkins, A. L., and Moss, B., 1985, Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype, Nature (Lond.) 317:813–815.Google Scholar
  13. Cassel, W. A., 1957, Multiplication of vaccinia virus in the Ehrlich ascites carcinoma, Virology 3:514–526.PubMedGoogle Scholar
  14. Chu, CM., 1946, Studies on vaccinia hemagglutinin. I. Some physico-chemical properties, J. Hyg. 46:42–48.Google Scholar
  15. Cochran, M. A., Puckett, C., and Moss, B., 1985, In vitro mutagenesis of the promoter region for a vaccinia virus gene: Evidence for tandem early and late regulatory signals, J. Virol. 54:30–37.PubMedGoogle Scholar
  16. Cummings, R. D., Kornfeld, S., Schneider, W. S., Hobgod, K. K., Tolleschang, H., Brown, M. S., and Goldstein, J. L., 1983, Biosynthesis of N-and O-linked oligosaccharides of the low density lipoprotein receptor, J. Biol. Chem. 258:15261–15273.PubMedGoogle Scholar
  17. Dales, S., Stern, W., Weintraub, B. S., and Huima, T., 1976, Genetically controlled surface modifications by poxviruses influencing cell-cell and cell-virus interactions, in: Cell Membrane Receptors for Viruses, Antigens and Antibodies, Polypeptide Hormones, and Small Molecules (R. F. Beers, Jr., and E. G. Basse, eds.), pp. 253–270, Raven, New York.Google Scholar
  18. Davis, G. L., and Hunter, E., 1987, A charged amino acid substitution within the transmembrane anchor of the Rous sarcoma virus envelope glycoprotein affects surface expression but not intracellular transport, J. Cell Biol. 105:1191–1203.PubMedGoogle Scholar
  19. Dorner, A. J., Bole, D. G., and Kaufman, R. J., 1987, The relationship of N-linked glycosylation and heavy chain-binding protein association with the secretion of glycoproteins, J. Cell Biol. 105:2665–2674.PubMedGoogle Scholar
  20. Doyle, C., Roth, M. G., Sambrook, J., and Gething, M.-J., 1985, Mutations in the cytoplasmic domain in the influenza virus hemagglutinin affect different stages of intracellular transport, J. Cell Biol. 100:704–714.PubMedGoogle Scholar
  21. Dunphy, W. G., Brands, R., and Rothman, J. E., 1985, Attachment of terminal N-acetylglucosamine to asparagine linked oligosaccha rides occurs in central cisternae of the Golgi stack, Cell 40:463–472.PubMedGoogle Scholar
  22. Epstein, D., Marsh, Y. V., Schreiber, A. B., Newman, S. R., Todaro, G. J., and Nestor, J. J., Jr., 1985, Epidermal growth factor receptor occupancy inhibits vaccinia virus infection, Nature (Lond.) 318:663–665.Google Scholar
  23. Ezzell, C., 1987, Trials of vaccine against AIDS to begin in humans, Nature (Lond.) 328:747.Google Scholar
  24. Fields, S., Winter, G., and Brownlee, G. G. 1981, Structure of the neuraminidase gene in human influenza virus A/PR/8/34, Nature (Lond.) 290:213–217.Google Scholar
  25. Flexner, C., Hügin, A., and Moss, B., 1987, Prevention of vaccinia virus infection in immunodefi-cient mice by vector-directed IL-2 expression, Nature (Lond.) 330:259–262.Google Scholar
  26. Foglesong, P. D., 1985, In vitro transcription of a cloned vaccinia virus gene by a soluble extract prepared from vaccinia virus-infected HeLa cells, J. Virol. 53:822–826.PubMedGoogle Scholar
  27. Funahashi, S., Sato, T., and Shida, H., 1988, Cloning and characterization of the gene encoding the major protein of the A-type inclusion body of cowpox virus, J. Gen. Virol. 69:35–47.PubMedGoogle Scholar
  28. Garoff, H., 1985, Using recombinant DNA techniques to study protein targeting in the eucaryotic cell Ann, Cell Biol. 1:403–445.Google Scholar
  29. Gething, M.-J., McCammon, K., and Sambrook, J., 1986, Expression of wild-type and mutant forms of influenza hemagglutinin: The role of folding in intracellular transport, Cell 46:939–950.PubMedGoogle Scholar
  30. Gibson, R., Schlesinger, S., and Kornfeld, S., 1979, The nonglycosylated glycoprotein of vesicular stomatitis virus is temperature-sensitive and undergoes intracellular aggregation at elevated temperatures, J. Biol. Chem. 254:3600–3607.PubMedGoogle Scholar
  31. Golini, F., and Kates, J. R., 1985, A soluble transcription system derived from purified vaccinia virions, J. Virol. 53:205–213.PubMedGoogle Scholar
  32. Hanggi, M., Bannwarth, W., and Stunnenberg, H. G., 1986, Conserved TAAAT motif in vaccinia virus late promoters: Overlapping TATA box and site of transcription initiation, EMBO J. 5:1071–1076.PubMedGoogle Scholar
  33. Hanover, J. A., Lennarz, W. J., and Young, J. D., 1980, Synthesis of N-and O-linked glycopeptides in oviduct membrane preparations, J. Biol. Chem. 255:6713–6716.PubMedGoogle Scholar
  34. Hanover, J. A., Elting, J., Mintz, G. R., and Lennarz, W. J., 1982, Temporal aspects of the N-and O-glycosylation of human chorionic gonadotropin, J. Biol. Chem. 257:10172–10177.PubMedGoogle Scholar
  35. Hardwick, J. M., Shaw, K. E. S., Wills, J. W., and Hunter, E., 1986, Amino-terminal deletion mutants of the Rous sarcoma virus glycoprotein do not block signal peptide cleavage but can block intracellular transport, J. Cell Biol. 103:829–838.PubMedGoogle Scholar
  36. Harris, J. R., 1978, The biochemistry and ultrastructure of the nuclear envelope, Biochim. Biophys. Acta 515:55–104.PubMedGoogle Scholar
  37. Hashizume, S., Yoshizawa, H., Morita, M., and Suzuki, K., 1985, Properties of attenuated mutant of vaccinia virus, LC16m8 derived from Lister strain, in: Vaccinia Viruses as Vectors for Vaccinia Antigens (J. Quinnan, ed.), pp. 87–99. Elsevier, New York.Google Scholar
  38. Hattori, S., Kiyokawa, T., Inakawa, K., Shimizu, F., Hashimura, E., Sciki, M., and Yoshida, M., 1984, Identification of gag and env gene products of human T-cell leukemia virus (HTLV), Virology 136:338–347.PubMedGoogle Scholar
  39. Heijne, G. V., 1984, How signal sequences maintain cleavage specificity, J. Mol. Biol. 173:243–251.Google Scholar
  40. Helenius, A., Kartenbeck, J., Simons, K., and Fries, E., 1980, On the entry of Semliki Forest virus into BHK-21 cells, J. Cell Biol. 84:404–420.PubMedGoogle Scholar
  41. Hidaka, M., Inoue, J., Yoshida, M., and Sciki, M., 1988, Post-transcriptional regulator (rex) of HTLV-I initiates expression of viral structural proteins but suppresses expression of regulatory proteins, EMBO J. 1:519–523.Google Scholar
  42. Hinuma, Y., Nagata, K., Hanaoka, M., Nakai, M., Matsumoto, T., Kinoshita, K., Shirakawa, S., and Miyoshi, I., 1981, Adult T cell leukemia: Antigen in an ATL cell line and detection of antibodies to the antigen in human sera, Proc. Natl. Acad. Sci. USA 78:6476–6480.PubMedGoogle Scholar
  43. Hoshino, H., Shimoyama, M., Miwa, M., and Sugimura, T., 1983, Detection of lymphocytes producing a human retrovirus associated with adult T-cell leukemia by syncytia induction assay, Proc. Natl. Acad. Sci. USA 80:7337–7341.PubMedGoogle Scholar
  44. Ichihashi, Y., 1977, Vaccinia-specific hemagglutinin, Virology 76:527–538.PubMedGoogle Scholar
  45. Ichihashi, Y., and Dales, S., 1971, Biogenesis of poxviruses: interrelationship between hemagglutinin production and polykariocytosis, Virology 46:533–543.PubMedGoogle Scholar
  46. Ichihashi, Y., Matsumoto, S., and Dales, S., 1971, Biogenesis of poxviruses: role of A-type inclusions and last cell membranes in virus dissemination, Virology B 46:507–532.Google Scholar
  47. Ikuta, K., Miyamoto, H., and Kato, S., 1979, Two components specifically responsible for hemagglutination in vaccinia and cowpox viruses, Virology 96:327–331.PubMedGoogle Scholar
  48. Inoue, J., Yoshida, M., and Sciki, M., 1987, Transcriptional (p40x) and post-transcriptional (p27x-III) regulators are required for the expression and replication of human T-cell leukemia virus type I genes, Proc. Natl. Acad. Sci. USA 84:3653–3657.PubMedGoogle Scholar
  49. Johnson, D. C., and Spear, P. G., 1983, O-linked oligosaccharides are acquired by Herpes simplex virus glycoproteins in the Golgi Apparatus, Cell 32:987–997.PubMedGoogle Scholar
  50. Jokinen, M., Ulmanen, I., Anderson, L. C., Kääriäinen, L., and Gahmberg, C. G., 1981, Cell-free synthesis and glycosylation of the major human-red-cell sialoglycoprotein, glycophorin A, Eur. J. Biochem. 114:393–397.PubMedGoogle Scholar
  51. Kalyanaraman, V. S., Sarngadharan, M. G., Nakao, Y., Ito, Y., Aoki, T., and Gallo, R. C., 1982, Natural antibodies to the structural core protein (p24) of the human T cell leukemia (lymphoma) retrovirus found in sera of leukemia patients in Japan, Proc. Natl. Acad. Sci. USA 79:1653–1657.PubMedGoogle Scholar
  52. Katz, F. N., Rothman, J. E., Lingappa, V. R., Blobel, G., and Lodish, H. F., 1977, Membrane assembly in vitro: synthesis, glylcosylation, and asymmetric insertion of a transmembrane protein, Proc. Natl. Acad. Sci. USA 74:3278–3282.PubMedGoogle Scholar
  53. Kiyokawa, T., Sciki, M., Iwashita, S., Imagawa, K., Shimizu, F., and Yoshida, M., 1985, p27x-III and p21x-III, proteins encoded by the pX sequence of human T-cell leukemia virus type I, Proc. Natl. Acad. Sci. USA 82:8359–8363.PubMedGoogle Scholar
  54. Kopito, R. R., and Lodish, H. F., 1985, Primary structure and transmembrane orientation of the murine anion exchange protein, Nature (Lond.) 316:234–238.Google Scholar
  55. Kornfeld, S., and Kornfeld, R., 1980, Structure of glycoproteins and their oligosaccharide units, in: Biochemistry of Glycoproteins and Proteoglycans, (W. J. Lennarz, ed.), pp. 1–34, Plenum, New York.Google Scholar
  56. Kornfeld, S., Li, E., and Tabas, I., 1978, The synthesis of complex-type oligosaccharides. II. Characterization of the processing intermediates in the synthesis of the complex oligosaccharide units of the vesicular stomatitis virus G protein, J. Biol. Chem. 253:7771–7778.PubMedGoogle Scholar
  57. Kreil, G., 1981, Transfer of proteins across membranes, Annu. Rev. Biochem. 50:317–348.PubMedGoogle Scholar
  58. Kuo, S. C., and Lampen, J. O., 1976, Tunicamycin inhibition of [3H] glucosamine incorporation into yeast glycoproteins. Binding of tunicamycin and interactions with phospholipids, Arch. Biochem. Biophys. 172:574–581.PubMedGoogle Scholar
  59. Leavitt, R., Schlesinger, S., and Kornfeld, S., 1977, Impaired intracellular migration and altered solubility of nonglycosylated glycoproteins of vesicular stomatitis virus and sindbis virus, J. Biol. Chem. 252:9018–9023.PubMedGoogle Scholar
  60. Lenard, J., and Miller, D. K., 1982, Uncoating of enveloped viruses, Cell 28:5–6.PubMedGoogle Scholar
  61. Lingappa, V. R., Katz, F. N., Lodish, H. F., and Blobel, G., 1978, A signal sequence for the insertion of a transmembrane glycoprotein, J. Biol. Chem. 253:8667–8670.PubMedGoogle Scholar
  62. Lodish, H. F., and Froshauer, S., 1977, Binding of viral glycoprotein mRNA to endoplasmic reticulum membranes is disrupted by puromycin, J. Cell Biol. 74:358–364.PubMedGoogle Scholar
  63. Machamer, C. E., and Cresswell, P., 1984, Monensin prevents terminal glycosylation of the N-and O-linked oligosaccharides of the HLA-DR-associated invariant chain and inhibits its dissociation from the α-β chain complex, Proc. Natl. Acad. Sci. USA 81:1287–1291.PubMedGoogle Scholar
  64. Mackett, M., and Smith, G. L., 1986, Vaccinia virus expression vectors, J. Gen. Virol. 67:2067–2082.PubMedGoogle Scholar
  65. Mackett, M., Smith, G. L., and Moss, B., 1982, Vaccinia virus: A selectable eukaryotic cloning and expression vector, Proc. Natl. Acad. Sci. USA 79:7415–7419.PubMedGoogle Scholar
  66. Mackett, M., Smith, G. L., and Moss, B., 1985, The construction and characterization of vaccinia virus recombinants expressing foreign genes, in: DNA Cloning: A Practical Approach pp. 191–211, (D. M. Glove, ed.), IRL Press, Oxford.Google Scholar
  67. Mars, M., and Beaud, G., 1987, Characterization of vaccinia virus early promoters and evaluation of their informational content, J. Mol. Biol. 198:619–631.PubMedGoogle Scholar
  68. Marshall, R., 1972, Glycoproteins, Annu. Rev. Biochem. 41:673–702.PubMedGoogle Scholar
  69. McQueen, N., Nayak, D. P., Stephens, E. B., and Compans, R. W., 1986, Polarized expression of a chimeric protein in which the transmembrane and cytoplasmic domains of the influenza virus hemagglutinin have been replaced by those of the vesicular stomatitis virus G protein, Proc. Natl. Acad. Sci. USA 83:9318–9322.PubMedGoogle Scholar
  70. Min-Jou, W., Verhoeyen, M., Devos, R., Saman, E., Fang, R., Huylebroeck, D., Fiers, W., Threlfall, G., Barber, C., Carey, N., and Emtage, S., 1980, Complete structure of the hemagglutinin gene from the human influenza A/Victoria/3/75 (H3 N2) strain as determined from cloned DNA, Cell 19:683–696.Google Scholar
  71. Morrison, T. G., and Lodish, H. F., 1975, Site of synthesis of membrane and nonmembrane proteins of vesicular stomatitis virus, J. Biol. Chem. 250:6955–6962.PubMedGoogle Scholar
  72. Moss, B., 1985, Replication of poxviruses, in: Virology (B. N. Fields, R. M. Chanock, and B. Roizman, eds.), pp. 685–703, Raven, New York.Google Scholar
  73. Nagashima, K., Yoshida, M., and Sciki, M., 1986, A single species of pX mRNA of human T-cell leukemia virus type I encodes trans-activator p40x and two other phosphoproteins, J. Virol. 60:394–399.PubMedGoogle Scholar
  74. Nagler, F. P. O., 1942, Application of Hirst’s phenomenon to titration of vaccinia virus and vaccinia immune serum, Med. J. Aust. 1:281–283.Google Scholar
  75. Nagy, K., Clapham, P., Cheingsong-Popov, R., and Weiss, R. A., 1983, Human T-cell leukemia virus type I: Induction of syncytia and inhibition by patients’ sera, Int. J. Cancer 32:321–328.PubMedGoogle Scholar
  76. Nam, S. H., and Hatanaka, M., 1986, Identification of a protease gene of human T-cell leukemia virus type I (HTLV-I) and its structural comparison, Biochem. Biophy. Res. Commun. 139:129–135.Google Scholar
  77. Nam, S.-H., Kidokoro, M., Shida, H., and Hatanaka, M., 1988, Processing of gag precursor polyprotein of Human T-cell leukemia virus type I (HTLV-1) by virus-encoded protease, J. Virol. 62:3718–3728.PubMedGoogle Scholar
  78. Neufeld, E. F., Tim, T. W., and Shapiro, L. J., 1975, Inherited disorders of lysosomal metabolism, Annu. Rev. Biochem. 44:357–376.PubMedGoogle Scholar
  79. Newmark, P., 1986, Problems with AIDS vaccines, Nature (Lond.) 324:304–305.Google Scholar
  80. Noda, M., Ikeda, T., Kayano, T., Suzuki, H., Takeshima, H., Kurasaki, M., Takahashi, H., and Numa, S., 1986, Existence of distinct sodium channel messenger RNA in rat brain, Nature (Lond.) 320:188–192.Google Scholar
  81. Oda, M., 1965, Rescue of dermovaccinia abortive infection by neurovaccinia virus in L cells, Virology 25:664–666.PubMedGoogle Scholar
  82. Oesch, B., Westaway, D., Walchi, M., McKinley, M. P., Kent, S. B. H., Aebersold, R., Barry, R. A., Tempst, P., Teplow, D. B., Hood, L. E., Prusiner, S. B., and Weissmann, C., 1985, A cellular gene encodes scrapie PrP 27-30 protein, Cell 40:735–746.PubMedGoogle Scholar
  83. Palade, G. L., 1975, Intracellular aspects of the process of protein synthesis, Science 189:347–358.PubMedGoogle Scholar
  84. Panicali, D., and Paoletti, E., 1982, Construction of poxviruses as cloning vectors: insertion of the thymidine kinase gene of herpes simplex virus into the DNA of infectious vaccinia virus, Proc. Nad. Acad. Sci. USA 79:4927–4931.Google Scholar
  85. Payne, G. L., 1979, Identification of the vaccinia hemagglutinin polypeptide from a cell system yielding large amounts of extracellular enveloped virus, J. Virol. 31:147–155.PubMedGoogle Scholar
  86. Pennington, T. H., 1974, Vaccinia virus polypeptide synthesis: Sequential appearance and stability of pre-and postreplicative polypeptides, J. Gen. Virol. 25:433–444.PubMedGoogle Scholar
  87. Perkus, M. E., Piccini, B. R., Lipinskas, B. R., and Paoletti, E., 1985, Recombinant vaccinia virus: Immunization against multiple pathogens, Science 229:981–984.PubMedGoogle Scholar
  88. Perkus, M. E., Panicali, D., Mercer, S., and Paoletti, E., 1986, Insertion and deletion mutants of vaccinia virus, Virology 152:285–297.PubMedGoogle Scholar
  89. Perimän, D., and Halvorson, H. O., 1983, A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptide, J. Mol. Biol. 167:391–409.Google Scholar
  90. Pfeffer, S. R., and Rothman, J. E., 1987, Biosynthetic protein transport and sorting by the endo-plasmic reticulum and Golgi, Annu. Rev. Biochem. 56:829–852.PubMedGoogle Scholar
  91. Puckett, C., and Moss, B., 1983, Selective transcription of vaccinia virus genes in template dependent soluble extracts of infected cells, Cell 35:441–448.PubMedGoogle Scholar
  92. Rodriguez, J. F., Paez, E., and Esteban, M., 1987, A 14,000-Mr envelope protein of vaccinia virus is involved in cell fusion and forms convalently linked trimers, J. Virol. 61:395–404.PubMedGoogle Scholar
  93. Rohrmann, G., and Moss, B., 1985, Transcription of vaccinia virus early genes by a templatedependent soluble extract of purified virions, J. Virol. 56:349–355.PubMedGoogle Scholar
  94. Rose, J. K., and Bergman, J. E., 1982, Expression from cloned cDNA of cell surface and secreted forms of the glycoprotein of vesicular stomatitis virus in eukaryotic cells, Cell 30:753–762.PubMedGoogle Scholar
  95. Rose, J. K., and Bergman, J. E., 1983, Altered cytoplasmic domains affect intracellular transport of the vesicular stomatitis virus glycoprotein, Cell 34:513–524.PubMedGoogle Scholar
  96. Rose, J. K., Welch, W. J., Sefton, B. M., Esch, F. S., and Ling, N. C., 1980, Visicular stomatitis virus glycoprotein is anchored in the viral membrane by a hydrophobic domain near the COOH terminus, Proc. Natl. Acad. Sci. USA 77:3884–3888.PubMedGoogle Scholar
  97. Rosel, J. L., and Moss, B., 1985, Transcriptional and translational mapping and nucleotide sequence analysis of a vaccinia virus gene encoding the precursor of the major core polypeptide, J. Virol. 56:830–838.PubMedGoogle Scholar
  98. Rosel, J. L., Earl, P. L., Weir, J. P., and Moss, B., 1986, Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the Hind III H genomic fragment, J. Virol. 60:436–449.PubMedGoogle Scholar
  99. Rossignol, B., Herman, G., and Clauser, H., 1969, Tentative identification of N-acetylgalac-tosamine incorporating membranes from ovine submaxillary glands (OSG), Biochem. Biophys. Res. Commun. 34:111–119.PubMedGoogle Scholar
  100. Roth, J., 1984, Cytochemical localization of terminal N-acetyl-D-galactosamine residues in cellular compartments of intestinal goblet cells: Implications for the topology of O-glycosylation, J. Cell Biol. 98:399–406.PubMedGoogle Scholar
  101. Roth, J., and Berger, E. G., 1982, Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphate in trans-Golgi cisternae, J. Cell Biol. 92:223–229.Google Scholar
  102. Roth, J., Taatjes, D. J., Lucocq, J. M., Weinstein, J., and Paulson, J. C., 1985, Demonstration of an extensive trans-tubular network continuous with the Golgi apparatus stack that may function in glycosylation, Cell 43:287–295.PubMedGoogle Scholar
  103. Rothmann, J. E., and Lodish, H. F., 1977, Synchronized transmembrane insertion and glycosylation of a nascent membrane protein, Nature (Lond.) 269:775–780.Google Scholar
  104. Rottier, P. J. M., Florkiewicz, R. Z., Shaw, A. S., and Rose, J. K., 1987, An internalized aminoterminal signal sequence retains full activity in vivo but not in vitro, J. Biol. Chem. 262:8889–8895.PubMedGoogle Scholar
  105. Sabatini, D. D., Kreibich, G., Morimoto, T., and Adesnik, M., 1982, Mechanism for the incorporation of proteins in membranes and organelles, J. Cell Biol. 92:1–22.PubMedGoogle Scholar
  106. Satake, M., Coligan, J. E., Elango, N., Norrby, E., and Venkatesan, S., 1985, Respiratory syncytial virus envelope glycoprotein (G) has a novel structure, Nucl. Acids Res. 13:7795–7812.PubMedGoogle Scholar
  107. Schupbach, J., Sangadharan, M. G., and Gallo, R. C., 1984, Antigens on HTLV-infected cells recognized by leukemia and AIDS sera are related to HTLV viral glycoprotein, Science 224:607–610.PubMedGoogle Scholar
  108. Sciki, M., Hikikoshi, A., Taniguchi, T., and Yoshida, M., 1985, Expression of the pX gene of HTLV-I: general splicing mechanism in the HTLV family, Science 228:1532–1534.Google Scholar
  109. Sciki, M., Inoue, J., Takeda, T., and Yoshida, M., 1986, Direct evidence that p40x of human T-cell leukemia virus type I is a trans-acting transcriptional activator, EMBO J. 5:561–565.Google Scholar
  110. Shida, H., 1986a, Nucleotide sequence of the vaccinia virus hemagglutinin gene, Virology 150:451–462.PubMedGoogle Scholar
  111. Shida, H., 1986b, Variants of vaccinia virus hemagglutinin altered in intracellular transport, Mol Cell. Biol. 6:3734–3745.PubMedGoogle Scholar
  112. Shida, H., and Dales, S., 1981, Biogenesis of vaccinia: Carbohydrates of the hemagglutinin molecule, Virology 111:56–72.PubMedGoogle Scholar
  113. Shida, H., and Dales, S., 1982, Biogenesis of vaccinia: Molecular basis for the hemagglutination-negative phenotype of the IHD-W strain, Virology 117:219–237.PubMedGoogle Scholar
  114. Shida, H., and Matsumoto, S., 1983, Analysis of the hemagglutinin glycoprotein from mutants of vaccinia virus that accumulates on the nuclear envelope, Cell 33:423–434.PubMedGoogle Scholar
  115. Shida, H., Tochikura, T., Sato, T., Konno, T., Hirayoshi, K., Ito, Y., Hatanaka, M., Hinuma, Y., Sugimoto, M., T-Nishimaki, F., Maruyama, T., Miki, K., Suzuki, K., Monta, M., Sashiyama, H., Yoshimura, N., and Hayami, M., 1987, Effect of the recombinant vaccinia viruses that express HTLV-I envelope gene on HTLV-I infection, EMBO J. 6:3379–3384.PubMedGoogle Scholar
  116. Shida, H., Hinuma, Y., Hatanaka, M., Monta, M., Kidokora, M., Suzuki, K., Maruyama, T., T-Nishimaki, F., Sugimoto, M., Kitamura, R., Miyazawa, T., and Hayami, M., 1988, J. Virol. 62:4474–4489.PubMedGoogle Scholar
  117. Siomi, H., Shida, H., Nam, S. H., Nosaka, T., Maki, M., and Hatanaka, M., 1988, Sequence requirements for nucleolar localization of human T cell leukemia virus type I pX protein, which regulates viral RNA processing, Cell 55:197–209.PubMedGoogle Scholar
  118. Smith, G. L., and Moss, B., 1983, Infectious poxvirus vectors have capacity for at least 25,000 base pairs of foreign DNA, Gene 25:21–28.PubMedGoogle Scholar
  119. Smith, C. E., Pratt, C. B., and Baxby, D., 1973, In vitro dissociation and reconstitution of poxvirus hemagglutinin, J. Gen. Virol. 18:111–118.PubMedGoogle Scholar
  120. Sommerville, J., 1986, Nucleolar structure and ribosome biogenesis, Trends Biochem. Sci. 11:438–442.Google Scholar
  121. Spiro, G. R., 1966, Characterization of carbohydrate units of glycoproteins, Methods Enzymol. 8:26–52.Google Scholar
  122. Stephens, E. B., and Compans, R. W., 1986, Nonpolarized expression of a secreted murine leukemia virus glycoprotein in polarized epithelial cells, Cell 47:1053–1059.PubMedGoogle Scholar
  123. Stephens, E. B., Compans, R. W., Earl, P., and Moss, B., 1986, Surface expression of viral glycoproteins is polarized in epithelial cells infected with recombinant vaccinia viral vectors, EMBO J. 5:237–245.PubMedGoogle Scholar
  124. Stern, W., and Dales, S., 1976, Biogenesis of vaccinia: Isolation and characterization of a surface component that elicits antibody suppressing infectivity and cell-cell fusion, Virology 75:232–241.PubMedGoogle Scholar
  125. Stone, J. D., 1946a, Inactivation of vaccinia and ectromelia virus hemagglutinins by lecithinase, Aust. J. Exp. Biol. Med. Sci. 24:191–196.PubMedGoogle Scholar
  126. Stone, J. D., 1946b, Lipid hemagglutinins, Aust. J. Exp. Biol. Med. Sci. 24:9–13.PubMedGoogle Scholar
  127. Stone, J. D., and Bumet, F. M., 1946, The production of vaccinia hemagglutinin in rabbit skin, Aust. J. Exp. Biol. Med. Sci. 24:9–13.PubMedGoogle Scholar
  128. Stroobant, P., Rice, A., Gullick, W. J., Chang, D. J., Ken, I. M., and Waterfield, M. D., 1985, Purification and characterization of vaccinia virus growth factor, Cell 42:383–393.PubMedGoogle Scholar
  129. Strous, G.J.A.M., 1981, Initial glycosylation of proteins with acetylgalactosaminylserine linkages, Proc. Nad. Acad. Sci. USA 76:2694–2698.Google Scholar
  130. Strubin, M., Mach, B., and Long, E. O., 1984, The complete sequence of the mRNA for the HLA-DR-associated invariant chain reveals a polypeptide with an unusual transmembrane polarity, EMBO J. 3:869–872.PubMedGoogle Scholar
  131. Takatsuki, Y., Kohono, K., and Tamura, G., 1975, Inhibition of biosynthesis of polyisoprenol sugars in chick embryo microsomes by tunicamycin, Agric. Biol. Chem. 39:2089–2091.Google Scholar
  132. Tarentino, A. L., and Maley, F., 1974, Purification and properties of an endo-β-N-acetylglucos-aminidase from Streptomyces griseus, J. Biol. Chem. 249:811–817.PubMedGoogle Scholar
  133. Tarentino, A. L., Plummer, T. H., Jr., and Maley, F., 1974, The release of intact oligosaccharides from specific glycoproteins by endo-β-N-acetylglucosaminidase H, J. Biol. Chem. 249:818–824.PubMedGoogle Scholar
  134. Tkacz, J. S., and Lampen, J. O., 1975, Tunicamycin inhibition of polyisoprenyl N-acetylglucos-aminyl pyrophosphate formation of calf liver microsomes, Biochem. Biophys. Res. Commun. 65:248–257.PubMedGoogle Scholar
  135. Vassef, A., 1987, Conserved sequences near the early transcription start sites of vaccinia virus, Nucl. Acids Res. 15:1427–1443.PubMedGoogle Scholar
  136. Venkatesan, S., Baroudy, B. M., and Moss, B., 1981, Distinctive nucleotide sequences adjacent to multiple initiation and termination sites of an early vaccinia virus gene, Cell 125:805–813.Google Scholar
  137. Walter, P., Gilmore, R., and Blobel, G., 1984, Protein translocation across the endoplasmic re-ticulum, Cell 38:5–8.PubMedGoogle Scholar
  138. Weintraub, S., and Dales, S., 1974, Biogenesis of poxviruses: genetically controlled modifications of structural and functional components of plasma membrane, Virology 60:96–127.PubMedGoogle Scholar
  139. Weir, J. P., and Moss, B., 1983, Nucleotide sequence of the vaccinia virus thymidime kinase gene and the nature of spontaneous frame shift mutations, J. Virol. 46:530–537.PubMedGoogle Scholar
  140. Weir, J. P., and Moss, B., 1987, Determination of the transcriptional regulatory region of a vaccinia virus late gene, J. Virol. 61:75–80.PubMedGoogle Scholar
  141. Wickner, W. T., and Lodish, H. F., 1985, Multiple mechanisms of protein insertion into and across membranes, Science 230:400–407.PubMedGoogle Scholar
  142. Wieland, F. T., Gleason, M. L., Serafini, T. A., and Rothman, J. E., 1987, The rate of bulk flow from the endoplasmic reticulum to the cell surface, Cell 50:289–300.PubMedGoogle Scholar
  143. Wittek, R., Richner, B., and Hiller, G., 1984, Mapping of the genes coding for the two major vaccinia virus core polypeptides, Nucl. Acids Res. 12:4835–4848.PubMedGoogle Scholar
  144. Yamamoto, N., and Hinuma, Y., 1985, Viral aetiology of adult T-cell leukemia, J. Gen. Virol. 66:1641–1660.PubMedGoogle Scholar
  145. Yewdell, J. W., Bennink, J. R., Smith, G. L., and Moss, B., 1985, Influenza A virus nucleoprotein is a major target antigen for cross-reactive anti-influenza A virus cytotoxic T lymphocytes, Proc. Nad. Acad. Sci. USA 82:1785–1789.Google Scholar
  146. Yewdell, J. W., Bennink, J. R., Mackett, M., Lefrancois, L., Lyles, D. S., and Moss, B., 1986, Recognition of cloned vesicular stomatitis virus internal and external gene products by cytotoxic T lymphocytes, J. Exp. Med. 163:1529–1538.PubMedGoogle Scholar
  147. Yewdell, J. W., Yellen, A., and Bachi, T., 1988, Monoclonal antibodies localize events in the folding, assembly, and intracellular transport of the influenza virus hemagglutinin glycoprotein, Cell 52:843–852.PubMedGoogle Scholar
  148. Yoshida, M., 1987, Expression of the HTLV-I genome and its association with a unique T-cell malignancy, Biochim. Biophys. Acta 907:145–161.PubMedGoogle Scholar
  149. Yoshida, M., Sciki, M., Yamaguchi, K., and Takatsuki, K., 1984, Monoclonal integration of human T-cell leukemia provirus in all primary tumors of adult T-cell leukemia suggests causative role of human T-cell leukemia virus in disease, Proc. Natl. Acad. Sci. USA 81:2534–2537.PubMedGoogle Scholar
  150. Zerial, M., Huylebroeck, D., and Garoff, H., 1987, Foreign transmembrane peptides replacing the internal signal sequence of transferrin receptor allow its translocation and membrane binding, Cell 48:147–155.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Hisatoshi Shida
    • 1
  1. 1.Institute for Virus ResearchKyoto UniversityKyoto 606Japan

Personalised recommendations