Molecular Karyotype Analysis in Leishmania

  • Patrick Bastien
  • Christine Blaineau
  • Michel Pagès
Part of the Subcellular Biochemistry book series (SCBI, volume 18)


Leishmania is a flagellated protozoan parasite belonging to the order Kinetoplastida and to the family Trypanosomatidae. A total number of 25 species has been described,* grouped in at least 12 complexes (Lainson and Shaw, 1972, 1987; Rioux, 1986; Rioux et al., 1990). They are responsible for a wide spectrum of human diseases, mostly in the tropics and subtropics, ranging from sometimes relatively benign cutaneous disease (L. major, L. tropica, L. mexicana, L. panamensis) to mutilating mucocutaneous and diffuse cutaneous lesions (L. braziliensis, L. amazonensis, L. aethiopica), and potentially fatal visceral disease affecting the hematopoietic organs (L. donovani, L. infantum, L. chagasi). Leishmaniasis has been estimated to affect 20 million people, mainly in poor countries from both the Old and the New World (Barker, 1987).


Homologous Chromosome Pulse Time Karyotype Analysis Chromosomal Band Small Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aksoy, S., Lalor, T. M., Martin, J., Van der Ploeg, L. H. T., and Richards, F. F., 1987, Multiple copies of a retroposon interrupt spliced leader RNA genes in the African trypanosome, Trypanosoma gambiense, EMBO J. 6:3819–3826.Google Scholar
  2. Aksoy, S., Williams, S., Chang, S., and Richards, F. F., 1990, SLACS retrotransposon from Trypanosoma brucei gambiense is similar to mammalian LINEs, Nucleic Acids Res. 18:785–792.PubMedCrossRefGoogle Scholar
  3. Aline, R. F., Jr., MacDonald, G., Brown, E., Allison, J., Myler, P., Rothwell, V., and Stuart, K., 1985, (TAA)n within sequences flanking several intrachromosomal variant surface glycoprotein genes in Trypanosoma brucei, Nucleic Acids Res. 13:3161–3177.PubMedCrossRefGoogle Scholar
  4. Altschuler, M. I., and Yao, M.-G., 1985, Macronuclear DNA of Tetrahymena thermophila exists as defined subchromosomal-sized DNA molecules, Nucleic Acids Res. 13:5817–5831.PubMedCrossRefGoogle Scholar
  5. Anonymous, 1978, Proposals for the nomenclature of salivarian trypanosomes and for the maintenance of reference collections, Bull. WHO 56:467–480.Google Scholar
  6. Anonymous, 1986, Recommendations, in Leishmania. Taxonomy and Phytogeny (J. A. Rioux, ed.), pp. 507–517, IMEEE, Montpellier, France.Google Scholar
  7. Bard, E., 1989, Molecular biology of Leishmania, Biochem. Cell Biol. 67:516–524.PubMedCrossRefGoogle Scholar
  8. Barker, D. C., 1987, DNA diagnosis of human leishmaniasis, Parasitol. Today 3:177–184.PubMedCrossRefGoogle Scholar
  9. Barker, D. C., and Gibson, L. J., Kennedy, W. P. K., Nasser, A.A.A.A., and Williams, R. H., 1986, The potential of using recombinant DNA species-specific probes for the identification of tropical Leishmania, Parasitology 91:S139–S174.CrossRefGoogle Scholar
  10. Bastien, P., Blaineau, C., Taminh, M., Rioux, J. A., Roizès, G., and Pagès, M., 1990, Interclonal variations in molecular karyotype in Leishmania infantum imply a “mosaic” strain structure, Mol. Biochem. Parasitol. 40:53–61.PubMedCrossRefGoogle Scholar
  11. Bellis, M., Pagès, M., and Roizès, G., 1987, Electrophorèse de l’ADN en champ pulsé, Rev. Inst. Pasteur Lyon 20:45–55.Google Scholar
  12. Bernards, A., Michels, P. A. M., Lincke, C. R., and Borst, P., 1983, Growth of chromosome ends in multiplying trypanosomes, Nature 303:592–597.PubMedCrossRefGoogle Scholar
  13. Beverley, S. M., and Coburn, C., 1990, Recurrent de novo appearance of small linear DNAs in Leishmania major and relationship to extra-chromosomal DNAs in other species, Mol. Biochem. Parasitol. 42:133–142.PubMedCrossRefGoogle Scholar
  14. Beverley, S. M., Ellenberger, T. E., Iovannisci, D. M., Kapler, G. M., Petrillo-Peixoto, M. L., and Sina, B. J., 1988, Gene amplification in Leishmania, in The Biology of Parasitism (MBL Lectures in Biology 9) (P. T. Englund and A. Sher, eds.), pp. 431–448, Alan R. Liss, New York.Google Scholar
  15. Biggs, B. A., Kemp, D. J., and Brown, G. V., 1989, Subtelomeric chromosome deletions in field isolates of Plasmodium falciparum and their relationship to loss of cytoadherence in vitro, Proc. Natl. Acad. Sci. USA 1986:2428–2432.CrossRefGoogle Scholar
  16. Bishop, R. P., 1990, Extensive homologies between Leishmania donovani chromosomes of markedly different size, Mol. Biochem. Parasitol. 38:1–12.PubMedCrossRefGoogle Scholar
  17. Bishop, R. P., and Miles, M. A., 1987, Chromosome size polymorphisms of Leishmania donovani, Mol. Biochem. Parasitol. 24:263–272.PubMedCrossRefGoogle Scholar
  18. Blaineau, C., Bastien, P., Rioux, J.-A., Riozés, G., and Pagés, M., 1991, Long-range restriction maps of size-variable homologous chromosomes in Leishmania infantum, Mol. Biochem. Parisitol. 46:293–302.CrossRefGoogle Scholar
  19. Borst, P., and Greaves, D. R., 1987, Programmed gene rearrangements altering gene expression, Science 235:658–667.PubMedCrossRefGoogle Scholar
  20. Borst, P., Fase-Fowler, F., Frasch, A. C. C., Hoeijmakers, J. H. J., and Weijers, P. J., 1980, Characterization of DNA from Trypanosoma brucei and related trypanosomes by restriction endonuclease digestion, Mol. Biochem. Parasitol. 1:221–246.CrossRefGoogle Scholar
  21. Borst, P., Van der Ploeg, L. H. T., Van Hoeck, J. F. M., Tas, J., and James, J., 1982, On the DNA content and ploidy of trypanosomes, Mol. Biochem. Parasitol. 6:13–23.PubMedCrossRefGoogle Scholar
  22. Button, L. L., Russel, D. G., Klein, H. L., Medina-Acosta, E., Karess, R. E., and McMaster, W. R., 1989, Genes encoding the major glycoprotein in Leishmania are tandemly linked at a single chromosomal locus and are constitutively transcribed, Mol. Biochem. Parasitol. 32:271–284.PubMedCrossRefGoogle Scholar
  23. Campbell, D. A., Van Bree, M. P., and Boothroyd, J. C., 1984, The 5′ limit of transposition and upstream barren region of trypanosome VSG gene: Tandem 76 base-pair repeats flanking (TAA)90, Nucleic Acids Res. 12:2759–2774.PubMedCrossRefGoogle Scholar
  24. Cantor, C. R., Gaal, A., and Smith, C. L., 1988, High-resolution separation and accurate size determination in pulsed-field gel electrophoresis of DNA. 3. Effect of electrical field shape, Biochemistry 27:9216–9221.PubMedCrossRefGoogle Scholar
  25. Cappai, R., Van Schravendijk, M.-R., Anders, R. F., Peterson, M. G., Thomas, L. M., Cowman, A. F., and Kemp, D. J., 1989, Expression of the RESA gene in Plasmodium falciparum isolate FCR3 is prevented by a subtelomeric deletion, Mol. Cell. Biol. 9:3584–3587.PubMedGoogle Scholar
  26. Carle, G. F., and Olson, M. V., 1984, Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis, Nucleic Acids Res. 12:5647–5664.PubMedCrossRefGoogle Scholar
  27. Carle, G. F., and Olson, M. V., 1985, An electrophoretic karyotype for yeast, Proc. Natl. Acad. Sci. USA 82:3756–3760.PubMedCrossRefGoogle Scholar
  28. Carle, G. F., and Olson, M. V., 1987, Orthogonal-field-alternation gel electrophoresis, Methods Enzymol. 155:468–483.PubMedCrossRefGoogle Scholar
  29. Carle, G. F., Frank, M., and Olson, M. V., 1986, Electrophoretic separations of large DNA molecules by periodic inversion of the electric field, Science 232:65–68.PubMedCrossRefGoogle Scholar
  30. Chance, M. L., 1986, The nomenclature of enzyme variants with particular reference to parasitic protozoa, in Leishmania: Taxonomy and Phylogeny (J. A. Rioux, ed.), pp. 85–89, IMEEE, Montpellier, France.Google Scholar
  31. Chang, K. P., and Hendricks, L. D., 1985, Laboratory cultivation and maintenance of Leishmania, in Leishmaniasis (K. P. Chang and R. S. Bray, eds.), pp. 213–244, Elsevier, Amsterdam.Google Scholar
  32. Chu, G., Vollrath, D., and Davis, R. W., 1986, Separation of large DNA molecules by contour-clamped homogeneous electric fields, Science 234:1582–1585.PubMedCrossRefGoogle Scholar
  33. Cibulskis, R. E., 1988, Origins and organization of genetic diversity in natural populations of Trypanosoma brucei, Parasitology 96:303–322.PubMedCrossRefGoogle Scholar
  34. Comeau, A. M., Miller, S. I., and Wirth, D. F., 1986, Chromosome location of four genes in Leishmania, Mol. Biochem. Parasitol. 21:161–169.PubMedCrossRefGoogle Scholar
  35. Corcoran, L. M., Forsyth, K. P., Bianco, A. E., Brown, G. V., and Kemp, D. J., 1986, Chromosome size polymorphisms in Plasmodium falciparum can involve deletions and are frequent in natural parasite populations, Cell 44:87–95.PubMedCrossRefGoogle Scholar
  36. Corcoran, L. M., Thompson, J. K., Walliker, D., and Kemp, D. J., 1988, Homologous recombination within subtelomeric repeat sequences generates chromosome size polymorphisms in P. falciparum, Cell 53:807–813.PubMedCrossRefGoogle Scholar
  37. Coulson, R. M. R., and Smith, D. F., 1990, Isolation of genes showing increased or unique expression in the infective promastigotes of Leishmania major, Mol. Biochem. Parasitol. 40:63–76.PubMedCrossRefGoogle Scholar
  38. Cowman, A. F., and Lew, A. M., 1989, Antifolate drug selection results in duplication and rearrangement of chromosome 7 in Plasmodium chabaudi, Mol. Cell. Biol. 9:5182–5188.PubMedGoogle Scholar
  39. Cruz, A., and Beverley, S. M., 1990, Gene replacement in parasitic protozoa, Nature 348:171–173.PubMedCrossRefGoogle Scholar
  40. De Jonckheere, J. F., Majewska, A. C., and Kasprzak, W., 1990, Giardia isolates from primates and rodents display the same molecular polymorphism, Mol. Biochem. Parasitol. 39:23–28.PubMedCrossRefGoogle Scholar
  41. De Jonge, P., De Jongh, F. C. M., Meijers, R., Steensma, H. Y., and Scheffers, W. A., 1986, Orthogonal-field-alternation gel electrophoresis banding patterns of DNA from yeasts, Yeast 2:193–204.PubMedCrossRefGoogle Scholar
  42. Dickin, S. K., and Gibson, W. C., 1989, Hybridisation with a repetitive DNA probe reveals the presence of small chromosomes in Trypanosoma vivax, Mol. Biochem. Parasitol. 33:135–142.PubMedCrossRefGoogle Scholar
  43. Dore, E., Pace, T., Ponzi, M., Picci, L., and Frontali, C., 1990, Organization of subtelomeric repeats in Plasmodium berghei, Mol. Biochem. Parasitol. 40:2423–2427.Google Scholar
  44. Dujardin, J. C., Gajendran, N., Hamers, R., Matthijsen, G., Urjel, R., Recacoechea, M., Villarroel, G., Bermudez, H., Desjeux, P., de Doncker, S., and Le Ray, D., 1989, Leishmaniasis in the Lowlands of Bolivia: VIII Characterization and identification of Bolivian isolates by PFG karyotyping, in Leishmaniasis. The Current Status and New Strategies for Control (D. T. Hart, ed.), pp. 137–148, Plenum Press, New York.Google Scholar
  45. Dvorak, J. A., Hall, T. E., Crane, M. S. J., Engel, J. C., McDaniel, J. P., and Uriegas, R., 1982, Trypanosoma cruzi: Flow cytometric analysis. I. Analysis of total DNA/organism by means of mithramycin-induced fluorescence, J. Protozool. 29:430–437.PubMedGoogle Scholar
  46. Ellenberger, T. E., and Beverley, S. M., 1989, Multiple drug resistance and conservative amplification of the H region in Leishmania major, J. Biol. Chem. 264:15094–15103.PubMedGoogle Scholar
  47. Ellis, J., and Crampton, J., 1988, Characterisation of a simple, highly repetitive DNA sequence from the parasite Leishmania donovani, Mol. Biochem. Parasitol. 29:9–18.PubMedCrossRefGoogle Scholar
  48. Engman, D. M., Reddy, L. V., Donelson, J. E., and Kirchhoff, L. V., 1987, Trypanosoma cruzi exhibits inter-and intra-strain heterogeneity in molecular karyotype and chromosomal gene location, Mol. Biochem. Parasitol. 22:115–123.PubMedCrossRefGoogle Scholar
  49. Evans, D. A., Kennedy, W. P. K., Elbihari, S., Chapman, C. J., Smith, V., and Peters, W., 1987, Hybrid formation within the genus Leishmania, Parassitologia 29:165–173.PubMedGoogle Scholar
  50. Fangman, W. L., 1978, Separation of very large DNA molecules by gel electrophoresis, Nucleic Acids Res. 5:653–665.PubMedCrossRefGoogle Scholar
  51. Foote, S. J., and Kemp, D. J., 1989, Chromosomes of malaria parasites, Trends Gen. 5:337–342.CrossRefGoogle Scholar
  52. Forney, J. D., and Blackburn, E. H., 1988, Developmentally controlled telomere addition in wild type and mutant Paramecia, Mol. Cell Biol. 8:251–258.PubMedGoogle Scholar
  53. Frutos, R., Pagès, M., Bellis, M., Roizès, G., and Bergoin, M., 1989, Pulsed-field gel electrophoresis determination of the genome size of obligate intracellular bacteria belonging to the genera Chlamydia, Rickettsiella, and Porochlamydia, J. Bacteriol. 171:4511–4513.PubMedGoogle Scholar
  54. Gabriel, A., Yen, T. J., Schwartz, D. C., Smith, C. L., Boeker, J. D., Sollner-Webb, B., and Cleveland, D. W., 1990, A rapidly rearranging retrotransposon within the miniexon gene locus of Crithidiafasciculcuta, Mol. Cell. Biol. 10:615–624.PubMedGoogle Scholar
  55. Gajendran, N., Dujardin, J. C., Le Ray, D., Matthyssens, G., Muyldermans, S., and Hammers, R., 1989, Abnormally migrating chromosome identifies Leishmania donovani populations, in Leishmaniasis: The Current Status and New Strategies for Control (D. T. Hart, ed.), pp. 539–547, Plenum Press, New York.Google Scholar
  56. Galindo, I., and Ramirez Ochoa, J. L., 1989, Study of Leishmania mexicana electrokaryotype by clamped homogeneous electric field electrophoresis, Mol. Biochem. Parasitol. 34:245–252.PubMedCrossRefGoogle Scholar
  57. Gardiner, K., Laas, W., and Patterson, D., 1986, Fractionation of large mammalian DNA restriction fragments using vertical pulsed-field gradient gel electrophoresis, Somatic Cell Mol. Genet. 12:185–195.CrossRefGoogle Scholar
  58. Garvey, E. P., and Santi, D. V., 1986, Stable amplified DNA in drug-resistant Leishmania exists as extrachromosomal circles, Science 233:535–540.PubMedCrossRefGoogle Scholar
  59. Giannini, S. H., Schittini, M., Keithly, J. S., Warburton, P. W., Cantor, C. R., and Van der Ploeg, L. H. T., 1986, Karyotype analysis of Leishmania species and its use in classification and diagnosis, Science 232:762–765.PubMedCrossRefGoogle Scholar
  60. Giannini, S. H., Curry, S. S., Tesh, R. B., and Van der Ploeg, L. H. T., 1990, Size-conserved chromosomes and stability of molecular karyotype in cloned stocks of Leishmania major, Mol. Biochem. Parasitol. 39:9–22.PubMedCrossRefGoogle Scholar
  61. Gibson, W. C., 1989, Analysis of a genetic cross between Trypanosoma brucei rhodesiense and T. b. brucei, Parasitology 99:391–402.PubMedCrossRefGoogle Scholar
  62. Gibson, W. C., and Borst, P., 1986, Size fractionation of the small chromosomes of Trypanozoon and Nannomonas trypanosomes by pulsed field gradient gel electrophoresis, Mol. Biochem. Parasitol. 18:127–140.PubMedCrossRefGoogle Scholar
  63. Gibson, W. C., and Miles, M. A., 1986, The karyotype and ploidy of Trypanosoma cruzi, EMBO J. 5:1299–1305.PubMedGoogle Scholar
  64. Gibson, W. C., Osinga, K. A., Michels, P. A. M., and Borst, P., 1985, Trypanosomes of subgenus Trypanozoon are diploid for housekeeping genes, Mol. Biochem. Parasitol. 16:231–242.CrossRefGoogle Scholar
  65. Gradoni, L., Gramiccia, M., Maroli, M., and Pozio, E., 1986, Etude expérimentale d’infections mixtes de Phlébotomus perniciosus Newstead, 1911 par différents zymodèmes de Leishmania infantum NicoUe, 1908, in Leishmania: Taxonomy and Phytogeny (J. A. Rioux, ed.), pp. 305–310, IMEEE, Montpellier, France.Google Scholar
  66. Grimaldi, G., Jr., Tesh, R. B., and McMahon-Pratt, D., 1989, A review of the geographic distribution and epidemiology of leishmaniasis in the New World, Am., J. Trop. Med. Hyg. 41:687–725.Google Scholar
  67. Hightower, R. C., and Santi, D. V., 1989, Migration properties of circular DNAs using orthogonal-field-altemation gel electrophoresis, Electrophoresis 10:283–290.PubMedCrossRefGoogle Scholar
  68. Hightower, R. C., Ruiz-Perez, L. M., Wong, M. L., and Santi, D. V., 1988, Extrachromosomal elements in the lower eukaryote Leishmania, J. Biol. Chem. 263:16970–16976.PubMedGoogle Scholar
  69. Horowitz, H., and Haber, J. E., 1985, Identification of autonomously replicating circular subtelomeric Y′ elements in Saccharomyces cerevisiae, Mol. Cell. Biol. 5:2369–2380.PubMedGoogle Scholar
  70. Horowitz, H., Thorburn, P., and Haber, J. E., 1984, Rearrangements of highly polymorphic regions near telomeres of Saccharomyces cerevisiae, Mol. Cell. Biol. 4:2509–2517.PubMedGoogle Scholar
  71. Iovannisci, D. M., and Beverley, S. M., 1989, Structural alterations of chromosome 2 in Leishmania major as evidence for diploidy, including spontaneous amplification of the mini-exon array, Mol. Biochem. Parasitol. 34:177–188.PubMedCrossRefGoogle Scholar
  72. Iovannisci, D. M., Goebel, D., Allen, K., Kaur, K., and Ullman, B., 1984, Genetic analysis of adenine metabolism in Leishmania donovani promastigotes: Evidence for diploidy at the adenine phosphoribosyl-transferase locus, J. Biol. Chem. 259:14617–14623.PubMedGoogle Scholar
  73. Jelinek, W. R., and Schmid, C. W, 1982, Repetitive sequences in eukaryotic DNA and their expression, Annu. Rev. Biochem. 51:813–844.PubMedCrossRefGoogle Scholar
  74. Jenni, L., Marti, S., Schweizer, J., Betschart, B., Le Page, R. W. F., Wells, J. M., Tait, A., Paindavoine, P., Pays, E., and Steinert, M., 1986, Hybrid formation between African tryp-anosomes during cyclical transmission, Nature 322:173–175.PubMedCrossRefGoogle Scholar
  75. Johnson, P. J., and Borst, P., 1986, Mapping of VSG genes on large expression-site chromosomes of Trypanosoma brucei separated by pulsed-field gradient electrophoresis, Gene 43:213–220.PubMedCrossRefGoogle Scholar
  76. Kamitsuka, P. F., Iovannisci, T. E., and Beverley, S. M., 1989, Rearrangement site for H-region amplification conferring multiple drug resistance in Leishmania is a dispersed repetitive element [Abstract], J. Cell Biochem. Suppl. 13E:107.Google Scholar
  77. Kapler, G. M., Zhang, K., and Beverley, S., 1987, Sequence and S1 nuclease mapping of the 5′-region of the dihydrofolate reductase thymidylate synthase gene of Leishmania major, Nucleic Acids Res. 15:3369–3383.PubMedCrossRefGoogle Scholar
  78. Kemp, D. J., Corcoran, L. M., Coppel, R. L., Stahl, H. D., Bianco, A. E., Brown, G. V., and Anders, R. F., 1985, Size variation in chromosomes from independent cultured isolates of Plasmodium falciparum, Nature 315:347–350.PubMedCrossRefGoogle Scholar
  79. Kemp, D. J., Thompson, J. K., Walliker, D., and Corcoran, L. M., 1987, Molecular karyotype of Plasmodium falciparum: Conserved linkage groups and expendable histidine-rich protein genes, Proc. Natl. Acad. Sci. USA 84:7672–7676.PubMedCrossRefGoogle Scholar
  80. Kidane, G. Z., Samaras, N., and Spithill, T. W., 1989, Cloning of developmentally regulated genes from Leismania major and expression following heat induction, J. Biol. Chem. 264:4244–4250.PubMedGoogle Scholar
  81. Kimmel, B. E., Ole-Moiyoi, O. K., and Young, J. R., 1987, Ingi, a 5.2-kb dispersed sequence element from Trypanosoma brucei that carries half of a smaller mobile element at either end and has homology with mammalian LINEs, Mol. Cell. Biol. 7:1465–1475.PubMedGoogle Scholar
  82. Kooy, R. F., Ashall, F., Van der Ploeg, M., and Overdulve, J. P., 1989, On the DNA content of Trypanosoma cruzi, Mol. Biochem. Parasitol. 36:73–76.PubMedCrossRefGoogle Scholar
  83. Lainson, R., and Shaw, J. J., 1972, Leishmaniasis in the New World: Taxonomic problems, Br. Med. Bull. 28:44–48.PubMedGoogle Scholar
  84. Lainson, R., and Shaw, J. J., 1986, The genus Leishmania Ross, 1903. Speculations on evolution and speciation, in Leishmania: Taxonomy and Phylogeny (J. A. Rioux, ed.), pp. 241–245, IMEEE, Montpellier, France.Google Scholar
  85. Lainson, R., and Shaw, J. J., 1987, Evolution, classification and geographical distribution, in The Leishmaniases in Biology and Medicine, Vol. 1 (W. Peters and R. Killick-Kendrick, eds.), pp. 1–120, Academic Press, London.Google Scholar
  86. Lainson, R., and Shaw, J. J., 1990. The laboratory mix-up of Leishmania strains, Trans. R. Soc. Trop. Med. Hyg. 84:753.PubMedCrossRefGoogle Scholar
  87. Landfear, S. M., Miller, S. I., and Wirth, D. F., 1986, Transcriptional mapping of Leishmania enrietti tubulin mRNAs, Mol. Biochem. Parasitol. 21:235–245.PubMedCrossRefGoogle Scholar
  88. Langsley, G., Patarapotikul, J., Handunnetti, S., Khouri, E., Mendis, K. N., and David, P. H., 1988, Plasmodium vivax: Karyotype polymorphism of field isolates, Exp. Parasitol. 67:301–306.PubMedCrossRefGoogle Scholar
  89. Lanotte, G., and Rioux, J. A., 1990, Fusion cellulaire chez Leishmania (Kinetoplastida, tryp-anosomatidae), Comptes Rendus Acad. Sci. Paris 310:285–288.Google Scholar
  90. Lanotte, G., Rioux, J. A., Maazoun, R., Pasteur, N., Pratlong, F., and Lepart, J., 1981, Application de la méthode numérique à la taxonomie du genre Leishmania Ross, 1903. A propos de 146 souches originaires de L’Ancien Monde, Ann. Parasitol. Hum. Comp. 56:575–592.PubMedGoogle Scholar
  91. Larson, D. D., Spangler, E. A., and Blackburn, E. H., 1987, Dynamics of telomere length variation in Tetrahymena thermophila, Cell 50:477–483.PubMedCrossRefGoogle Scholar
  92. Le Blancq, S. M., Cibulskis, R. E., and Peters, W., 1986, Leishmania in the Old World: 5. Numerical analysis of isoenzyme data, Trans. R. Soc. Trop. Med. Hyg. 80:517–524.PubMedCrossRefGoogle Scholar
  93. Le Blancq, S. M., Lanham, S. M., and Evans, D. A., 1987, Comparative isoenzyme profiles of Old and New World Leishmania, in The Leishmaniases in Biology and Medicine (W. Peters and R. Killick-Kendrick, eds.), pp. 543–550, Academic Press, London.Google Scholar
  94. Leon, W., Fouts, D. L., and Manning, J., 1978, Sequence arrangement of the 16S and 26S rRNA genes in the pathogenic haemoflagellate Leishmania donovani, Nucleic Acid Res. 5:491–504.PubMedCrossRefGoogle Scholar
  95. Le Page, R. W. F., Wells, J. M., Prospera, T. D., and Sternberg, J., 1988, Genetic analysis of hybrid Trypanosoma brueei, in Molecular Genetics of Parasitic Protozoa (M. J. Turner and D. Arnot, eds.), pp. 65–71, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  96. Maazoun, R., Lanotte, G., Rioux, J. A., Pasteur, N., Killick-Kendrick, R., and Pratlong, F., 1981, Signification du polymorphisme enzymatique chez les Leishmanies, Ann. Parasitol. Hum. Comp. 56:467–475.PubMedGoogle Scholar
  97. Maigon, R. D. C., Elson, L., Hommel, M., Crampton, J. M., and Chance, M. L., 1990, Multiple distinct gp63-like genes in amastigotes of Leishmania donovani, in Parasites: molecular biology, drugs, and vaccine design (N. Agabian and A. Cerami, eds.), UCLA Symp. Mol. Cell. Biol. 131, pp. 191–204, Wiley-Liss, New York.Google Scholar
  98. Mathew, M. K., Smith, C. L., and Cantor, C. R., 1988a, High-resolution separation and accurate size determination in pulsed-field gel electrophoresis of DNA. 1. DNA size standards and effect of agarose and temperature, Biochemistry 27:9204–9210.PubMedCrossRefGoogle Scholar
  99. Mathew, M. K., Smith, C.L., and Cantor, C. R., 1988b, High-resolution separation and accurate size determination in pulsed-field gel electrophoresis of DNA. 2. Effect of pulse time and electric field strength and implication for models of the separation process, Biochemistry 27:9210–9216.PubMedCrossRefGoogle Scholar
  100. Mathew, M. K., Hui, C.-F., Smith, C. L., and Cantor, C. R., 1988c, High-resolution separation and accurate size determination in pulsed-field gel electrophoresis of DNA. 4. Influence of DNA topology, Biochemistry 27:9222–9226.PubMedCrossRefGoogle Scholar
  101. McMahon-Pratt, D., Jaffe, C. L., Bennet, E., David, J. R., and Grimaldi, G., Jr., 1986, Studies employing monoclonal antibodies for the analysis of the genus Leishmania Ross, 1903, in Leishmania: Taxonomy and Phytogeny (J. A. Rioux, ed.), pp. 173–178, IMEEE, Montpellier, France.Google Scholar
  102. Michels, P. A. M., Lin, A.-C., Bernards, A., Sloof, P., Van der Bijl, M. M. W, Schinkel, A. H., Menke, H. H., and Borst, P., 1983, Activation of the genes for variant surface glycoproteins 117 and 118 in Trypanosoma brucei, J. Mol. Biol. 166:537–556.PubMedCrossRefGoogle Scholar
  103. Molyneux, D. H., and Killick-Kendrick, R., 1987, Morphology ultrastructure and life cycles, in The Leishmaniases in Biology and Medicine, Vol. I (W. Peters and R. Killick-Kendrick, eds.), pp. 121–176, Academic Press, London.Google Scholar
  104. Moreno, G., 1989, Les complexes Leishmania donovani et Leishmania infantum. Implications taxinomiques, biogéographiques et épidémiologiques. A propos de l’analyse enzymatique de 548 souches de l’Ancien Monde, Ph.D. Thesis, (Parasitology), Université des Sciences et Techniques du Languedoc, Académie de Montpellier.Google Scholar
  105. Murphy, N. B., Pays, A., Tebabi, P., Coquelet, H., Guyaux, M., Steinert, M., and Pays, E., 1987, Trypanosoma brucei repeated element with unusual structural and transcriptional properties, J. Mol. Biol. 195:855–871.PubMedCrossRefGoogle Scholar
  106. Oquendo, P., Goman, M., Mackay, M., Langsley, G., Walliker, D., and Scaife, J., 1986, Characterization of a repetitive DNA sequence from the malaria parasite Plasmodium falciparum, Mol. Biochem. Parasitol. 18:89–101.PubMedCrossRefGoogle Scholar
  107. Orbach, M. J., Vollrath, D., Davis, R. W., and Yanofsky, C., 1988, An electrophoretic karyotype of Neurospora crassa, Mol. Cell. Biol. 8:1469–1473.PubMedGoogle Scholar
  108. Pace, T., Ponzi, M., Dore, E., and Frontali, C., 1987, Telomeric motifs are present in a highly repetitive element in the Plasmodium berghei genome, Mol. Biochem. Parasitol. 24:193–202.PubMedCrossRefGoogle Scholar
  109. Pacheco, R. S., Lopes, U. G., Morel, C. M., Grimaldi, G., Jr., and Momen, H., 1986, Schizodeme analysis of Leishmania isolates and comparison with some phenotypic techniques, in Leishmania: Taxonomy and Phylogeny (J. A. Rioux, ed.), pp. 57–65, IMEEE, Montpellier, France.Google Scholar
  110. Pagès, M., Bastien, P., Veas, F., Rossi, V., Bellis, M., Wincker, P., Rioux, J. A., and Roizès, G., 1989, Chromosome size and number polymorphisms in Leishmania infantum suggest amplification/deletion and possible genetic exchange, Mol. Biochem. Parasitol. 36:161–168.PubMedCrossRefGoogle Scholar
  111. Paindavoine, P., Zampetti-Bosseler, F., Pays, E., Schweizer, J., Guyaux, M., Jenni, L., and Steinert, M., 1986, Trypanosome hybrids generated in tse-tse flies by nuclear fusion, EMBO J. 5:3631–3636.PubMedGoogle Scholar
  112. Patarapotikul, J., and Langsley, G., 1988, Chromosome size polymorphism in Plasmodium falciparum can involve deletions of the subtelomeric pPFrep20 sequence, Nucleic Acids Res. 16:4331–4340.PubMedCrossRefGoogle Scholar
  113. Petrillo-Peixoto, M. L., and Beverley, S. M., 1989, Amplification of a new-region of DNA in an unselected laboratory stock of L. tarentolae: The T region, J. Protozool. 36:257–261.PubMedGoogle Scholar
  114. Phan, H. L., Forney, J., and Blackburn, E. H., 1989, Analysis of Paramecium macronuclear DNA using pulsed field gel electrophoresis, J. Protozool. 36:402–408.PubMedGoogle Scholar
  115. Pologe, L. G., and Ravetch, J. V., 1986, A chromosomal rearrangement in a P. falciparum histidine rich protein gene is associated with the knobless phenotype, Nature 322:474–477.PubMedCrossRefGoogle Scholar
  116. Pologe, L. G., and Ravetch, J. V., 1988, Large deletions result from breakage and healing of P. falciparum chromosomes, Cell 55:869–874.PubMedCrossRefGoogle Scholar
  117. Ponzi, K. D., Janse, C. J., Dore, E., Scotti, R., Pace, T., Reterink, T. J. F., Van der Berg, F. M., and Mons, B., 1990, Generation of chromosome size polymorphism during in vivo mitotic multiplication of Plasmodium berghei involves both loss and addition of subtelomeric repeat sequences, Mol. Biochem. Parasitol. 41:73–82.PubMedCrossRefGoogle Scholar
  118. Prensier, G., and Slomianny, C., 1986, The karyotype of Plasmodium falciparum determined by ultrastructural serial sectioning and 3-D reconstruction, J. Parasitol. 72:731–736.PubMedCrossRefGoogle Scholar
  119. Raikov, I. B., 1982, The protozoan nucleus. Morphology and evolution, Cell Biology Monographs, Vol. 9, Springer-Verlag, Wien & New York.Google Scholar
  120. Ravetch, J. V., 1989, Chromosomal polymorphisms and gene expression in Plasmodium falciparum, Exp. Parasitol. 68:121–125.PubMedCrossRefGoogle Scholar
  121. Richards, T., 1989, DNA molecules observed, Nature 338:461–462.PubMedCrossRefGoogle Scholar
  122. Rioux, J. A., 1986, Leishmania: Taxonomy and Phylogeny, IMEEE, Montpellier, France.Google Scholar
  123. Rioux, J. A., Lanotte, G., Maazoun, R., and Pasteur, N., 1985, L’électrophorèse des enzymes dans le genre Leishmania Ross, 1903, Parassitologia 27:141–156.PubMedGoogle Scholar
  124. Rioux, J. A., Lanotte, G., Serres, E., Pratlong, F., Bastien, P., and Périéres, J., 1990, Taxonomy of Leishmania. Use of isoenzymes. Suggestions for a new classification, Ann. Parasitol. hum. comp. 65:111–125.PubMedGoogle Scholar
  125. Samaras, N., and Spithill, T. W., 1987, Molecular karyotype of five species of Leishmania and analysis of gene locations and chromosomal rearrangements, Mol. Biochem. Parasitol. 25:279–291.PubMedCrossRefGoogle Scholar
  126. Scholler, J. K., Reed, S. G., and Stuart, K., 1986, Molecular karyotype of species and sub-species of Leishmania, Mol. Biochem. Parasitol. 20:279–293.PubMedCrossRefGoogle Scholar
  127. Schwartz, D. C., and Cantor, C. R., 1984, Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis, Cell 37:67–75.PubMedCrossRefGoogle Scholar
  128. Schwartz, D. C., and Koval, M., 1989, Conformational dynamics of individual DNA molecules during gel electrophoresis, Nature 338:520–522.PubMedCrossRefGoogle Scholar
  129. Shah, J. S., Young, J. R., Kimmel, B. E., Iams, K. P., and Williams, R. O., 1987, The 5′ flanking sequence of a Trypanosoma brucei variable surface glycoprotein gene, Mol. Biochem. Parasitol. 24:163–174.PubMedCrossRefGoogle Scholar
  130. Sharkey, A., Langsley, G., Patarapotikul, J., Mercereau-Puijalon, O., McLean, A., and Walliker, D., 1988, Chromosome size variation in malaria parasite of rodents, Plasmodium chabaudi, Mol. Biochem. Parasitol. 28:47–54.CrossRefGoogle Scholar
  131. Shirley, M. W., Kemp, D. J., Pallister, J., and Prowse, S. J., 1990, A molecular karyotype of Eimeria tenella as revealed by contour-clamped homogeneous electric field gel electrophoresis, Mol. Biochem. Parasitol. 38:169–174.PubMedCrossRefGoogle Scholar
  132. Sinnis, P., and Wellems, T. E., 1988, Long-range restriction maps of Plasmodium falciparum chromosomes: Crossing-over and size variation among geographically distant isolates, Genomics 3:287–295.PubMedCrossRefGoogle Scholar
  133. Smith, C. L., Matsumoto, T., Niwa, O., Klco, S., Fan, J. B., Yanagida, M., and Cantor, C. R., 1987, An electrophoretic karyotype for Schizosaccharomyces pombe by pulsed field gel electrophoresis, Nucleic Acids Res. 15:4481–4489.PubMedCrossRefGoogle Scholar
  134. Snell, R. G., and Wilkins, R. J., 1986, Separation of chromosomal molecules from C. albicans by pulsed field gel electrophoresis, Nucleic Acids Res. 14:4401–4406.PubMedCrossRefGoogle Scholar
  135. Snell, R. G., Hermans, I. F., Wilkins, R. J., and Corner, B. E., 1987, Chromosomal variations in Candida albicans, Nucleic Acids Res. 5:2369–2380.Google Scholar
  136. Spithill, T. W., and Samaras, N., 1985, The molecular karyotype of Leishmania major and mapping of a-and β-tubulin gene families to multiple unlinked chromosomal loci, Nucleic Acids Res. 13:4155–4169.PubMedCrossRefGoogle Scholar
  137. Spithill, T. W., and Samaras, N., 1987a, Chromosome size polymorphisms and mapping of tubulin gene loci in Leishmania, in Molecular Strategies of Parasitic Invasion (N. Agabian, H. Goodman, and N. Noguiera, eds.), pp. 269–278, Alan R. Liss, New York.Google Scholar
  138. Spithill, T. W., and Samaras, N., 1987b, Genomic organization, chromosomal location and transcription of dispersed and repeated tubulin genes in Leishmania major, Mol. Biochem. Parasitol. 24:23–37.PubMedCrossRefGoogle Scholar
  139. Steele, P. E., Carle, G. F., Kobayashi, G. S., and Medoff, G., 1989, Electrophoretic analysis of Histoplasma capsulatum chromosomal DNA, Mol. Cell Biol. 9:983–987.PubMedGoogle Scholar
  140. Sternberg, J., Turner, C. M. R., Wells, J. M., Ranford-Cartwright, L. C., Le Page, R. W. F., and Tait, A., 1989, Gene exchange in African trypanosomes: Frequency and allelic segregation, Mol. Biochem. Parasitol. 34:269–280.PubMedCrossRefGoogle Scholar
  141. Stuart, K., Tarr, P., Aline, R. F., Jr., Smiley, B. L., Scholler, J., and Keithly, J., 1989, Small nucleic acids in Leishmania, in Leishmaniasis: The Current Status and New Strategies for Control (D. T. Hart, ed.), pp. 555–562, Plenum Press, New York.Google Scholar
  142. Tait, A., 1983, Sexual processes in the kinetoplastida, Parasitology 86:29–57.PubMedCrossRefGoogle Scholar
  143. Tait, A., and Turner, C. M. R., 1990, Genetic exchange in Trypanosoma brucei, Parasitol. Today 6:70–75.PubMedCrossRefGoogle Scholar
  144. Tait, A., Barry, J. D., Wink, R., Sanderson, A., and Crowe, J. S., 1985, Enzyme variation in T. brucei ssp. II. Evidence for T. b. rhodesiense being a set of variants of T. b. brucei, Parasitology 90:89–100.PubMedCrossRefGoogle Scholar
  145. Tarr, P. I., Aline, R. F., Smiley, B. L., Scholler, J., Keithly, J., and Stuart, K., 1988, LR1: A candidate RNA virus of Leishmania, Proc. Natl. Acad. Sci. USA 85:9572–9275.PubMedCrossRefGoogle Scholar
  146. Tibayrenc, M., Kjellberg, F., and Ayala, F. J., 1990, A clonal theory of parasitic protozoa: The population structures of Entomoeba, Giardia, Leishmania, Naegleeria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences, Proc. Natl. Acad. Sci. USA 87:2414–2418.PubMedCrossRefGoogle Scholar
  147. Valdés, J., de la Cruz Hernandez, F., Ocadiz, R., and Orozco, E., 1990, Molecular karyotype of Entamoeba histolytica and E. invadens, Trans. R. Soc. Trop. Med. Hyg. 84:537–541.PubMedCrossRefGoogle Scholar
  148. Van der Ploeg, L. H. T., Schwartz, D. C., Cantor, C. R., and Borst, P., 1984a, Antigenic variation in Trypanosoma brucei analysed by electrophoretic separation of chromosome-sized DNA molecules, Cell 37:77–84.PubMedCrossRefGoogle Scholar
  149. Van der Ploeg, L. H. T., Cornelissen, A. W. C. A., Barry, J. D., and Borst, P., 1984b, Chromosomes of Kinetoplastida, EMBO J. 3:3109–3115.PubMedGoogle Scholar
  150. Van der Ploeg, L. H. T., Cornelissen, A. W. C. A., Michels, P. A. M., and Borst, P., 1984c, Chromosome rearrangements in Trypanosoma brucei Cell 39:213–221.CrossRefGoogle Scholar
  151. Van der Ploeg, L. H. T., Smits, M., Ponnudurai, T., Vermeulen, A., Meuwissen, J. H. E. T., and Langsley, G., 1985, Chromosome-sized DNA molecules of Plasmodium falciparum, Science 229:658–661.PubMedCrossRefGoogle Scholar
  152. Van der Ploeg, L. H. T., Smith, C. L., Polvere, R. I., and Gottesdiener, K. M., 1989, Improved separation of chromosome-sized DNA from Trypanosoma brucei stock 427-60, Nucleic Acids Res. 17:3217–3227.PubMedCrossRefGoogle Scholar
  153. Vedel, M., and Robert-Géro, M., 1987, Characterization of RNA from Leishmania tropica and L. donovani promastigotes, Mol. Biochem. Parasitol. 24:81–87.PubMedCrossRefGoogle Scholar
  154. Vernick, K. D., Walliker, D., and McCutchan, T. F., 1988, Genetic hypervariability of telomererelated sequences is associated with meiosis in Plasmodium falciparum, Nucleic Acids Res. 16:6973–6985.PubMedCrossRefGoogle Scholar
  155. Villalba, E., and Ramirez, J. L., 1982, Ribosomal DNA of Leishmania brasiliensis: Number of ribosomal copies and gene isolation, J. Protozool. 29:438–441.PubMedGoogle Scholar
  156. Vollrath, D., and Davis, R. W., 1987, Resolution of DNA molecules greater than 5 megabases by contour-clamped homogeneous electric fields, Nucleic Acids Res. 15:7865–7876.PubMedCrossRefGoogle Scholar
  157. Walliker, D., Quakyi, I. A., Wellems, T. E., McCutchan, T. F., Szarfman, A., London, W. T., Corcoran, L. M., Burkot, T. R., and Carter, R., 1987, Genetic analysis of the human malaria parasite Plasmodium falciparum, Science 236:1661-1666.PubMedCrossRefGoogle Scholar
  158. Wellems, T. E., Walliker, D., Smith, C. L., do Rosario, V. E., Maloy, W. L., Howard, R. J., Carter, R., and McCutchan, T. F., 1987, A histidine-rich protein gene marks a linkage group favored strongly in a genetic cross of Plasmodium falciparum, Cell 49:633–642.PubMedCrossRefGoogle Scholar
  159. Wells, J. M., Prospera, T. D., Jenni, L., and Le Page, R. W. F., 1987, DNA contents and molecular karyotypes of hybrid Trypanosoma brucei, Mol. Biochem. Parasitol. 249:103–116.CrossRefGoogle Scholar
  160. Widmer, G., Comeau, A. M., Furlong, D. B., Wirth, D. F., and Patterson, J. L., 1989, Characterization of a RNA virus from the parasite Leishmania, Proc. Natl. Acad. Sci. USA 86:5979–5982.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Patrick Bastien
    • 1
  • Christine Blaineau
    • 1
  • Michel Pagès
    • 2
  1. 1.Laboratoire d’Ecologie Médicale et Pathologie ParasitaireAnnexe de la Faculté de MédecineMontpellierFrance
  2. 2.Centre de Recherche de Biochimie Macromoleculaire du CNRS et Unité 249 de l’INSERMMontpellier CedexFrance

Personalised recommendations