Surface Reactions Controlled by the Bulk Migration of Oxide Ions

Working Mechanism of Multicomponent Bismuth Molybdate and Scheelite-Type Oxide Catalysts
  • Yoshihiko Moro-oka
  • Wataru Ueda
  • De-Hua He
Part of the Fundamental and Applied Catalysis book series (FACA)

Abstract

It is well known that multicomponent bismuth molybdates are most active and selective catalysts for the allylic oxidation and ammoxidation of lower olefins.(1) They are widely used in industrial processes, but, owing to their complicated compositions and structures, little has been reported for the working mechanism and role of each element in the multicomponent catalyst system. In contrast, catalytic oxidations of lower olefins over simple bismuth molybdates have been extensively investigated. The reaction mechanism via allylic intermediates and participation of the lattice oxide ion intQ the surface reaction according to the Mars and van Klevelen mechanism(2) have been well established. Extension of the 18O2 tracer technique developed by Keulks(3) and Wragg et al.(4) made it possible to measure the diffusion rate of oxide ions in the typical phases of bismuth molyb-date and to determine the depth of the oxide ion layers which can be involved in the oxidation reaction.(5)

Keywords

Migration Dioxide Chromium Cobalt Catalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For example: (a) Grasselli, R. K., and Callahan, J. L. (Standard Oil Ohio), U.S. Patent 3, 414, 631 (1968); (b) Grasselli, R. K., and Hardman, H. F. (Standard Oil Ohio), U. S. Patent 3, 642, 930 (1972); (c) Takenaka, S., and Yamaguchi, G. (Non Kayaku), Japan Patent 69-6, 245 and 69-6, 246 (1969).Google Scholar
  2. 2.
    Mars, P., and van Krevelen, D. W., Chem. Eng. Sci., Suppl. 3, 41 (1954).CrossRefGoogle Scholar
  3. 3.
    Keulks, G. W., J. Catalysis 19, 232 (1970).CrossRefGoogle Scholar
  4. 4.
    Wragg, R. D. Ashmore, P. G., and Hockey, J. A., J. Catalysis 22, 49 (1971); 28, 337 (1973).CrossRefGoogle Scholar
  5. 5.
    Keulks, G. W., and Krenzke, L. D., in Proceedings of 6th International Congress on Catalysis, London, 1976, G. C. Bond, P. B. Wells, and F. C. Tompkins, eds., Vol.2, p. 806, The Chemical Society, London, 1977Google Scholar
  6. Keulks, G. W., and Krenzke, L. D. J. Catalysis 61, 316 (1980).CrossRefGoogle Scholar
  7. 6.
    Ueda, W., Moro-oka, Y., and Ikawa, T., J. Catalysis 70, 409, (1981).CrossRefGoogle Scholar
  8. 7.
    Ueda, W., Moro-oka, Y., Ikawa, T., and Matsuura, I., Chem. Lett. 1365 (1982).Google Scholar
  9. 8.
    Ueda, W., Moro-oka, Y., and Ikawa, T., J. Catalysis 88, 214 (1984).CrossRefGoogle Scholar
  10. 9.
    Moro-oka, Y., Ueda, W., Tanaka, S., and Ikawa, T., in Proceedings of 7th International Congress on Catalysis, Tokyo, 1980, T. Seiyama and K. Tanabe, eds., Part B, p. 1086 Kodansha-Elsevier/Tokyo (1981).Google Scholar
  11. 10.
    Ueda, W., Asakawa, K., Chen, C. L., Moro-oka, Y., and Ikawa, T., J. Catalysis 101, 360 (1986).CrossRefGoogle Scholar
  12. 11.
    Ueda, W., Chen, C. L., Asakawa, K., Moro-oka, Y., and Ikawa, T., J. Catalysis 101, 369 (1986).CrossRefGoogle Scholar
  13. 12.
    Aykan, K., Sleight, A. W., and Rogers, D. B., J. Catalysis 29, 185 (1973)CrossRefGoogle Scholar
  14. Aykan, K., Halvorson, D., and Sleight, A. W., J. Catalysis 35, 401 (1974).CrossRefGoogle Scholar
  15. 13.
    Wolfs, M. W. J., and Batist, Ph. A., J. Catalysis 32, 25 (1974).CrossRefGoogle Scholar
  16. 14.
    Matsura, I., and Wolfs, M. W. J., J. Catalysis 37, 174 (1975).CrossRefGoogle Scholar
  17. 15.
    LoJacono, M., Notermann, T., and Keulks, G. W., J. Catalysis 40, 19 (1975).CrossRefGoogle Scholar
  18. 16.
    Linn, W. J., and Sleight, A. W., J. Catalysis 41, 134 (1976).CrossRefGoogle Scholar
  19. 17.
    Matsura, I., in Proceedings of 7th Intern. Congr. on Catalysis, Tokyo, 1980, T. Seiyama and K. Tanabe, eds., Part B, p. 1099, Kodansha-Elsevier (1981).Google Scholar
  20. 18.
    Ooij, W. J. V., and Muizebelt, W. J., in Proceedings of Intern. Vacuum Congr. and 3rd Intern. Conf. of Solid Surface, Vienna, p. 839 (1977).Google Scholar
  21. 19.
    Rao, T. S. R. P., and Menon, P. G., J. Catalysis 51, 64 (1978).CrossRefGoogle Scholar
  22. 20.
    Umemura, S., Ohdan, K., and Asada, H., in 5th Japan-Soviet Catalysis Seminar, p. 60 (1979).Google Scholar
  23. 21.
    Moro-oka, Y., Ueda, W., and He, De-Hua, in Structure-Activty and Selectivity Relationships in Heterogeneous Catalysis, R. K. Grasselli and A. W. Sleight, eds., Elsevier Science Publishers, Amsterdam, p. 57.Google Scholar
  24. 22.
    Sleight, A. W., Aykan, K., and Rojers, D. B., J. Solid State Chem. 13, 231 (1975)CrossRefGoogle Scholar
  25. Sleight, A. W., Advanced Materials in Catalysis, p. 181, Academic Press, New York (1977).Google Scholar
  26. 23.
    Hashiba, H., Kanesaka, M., and Matsuura, I., Shokubai 27, 434 (1985).Google Scholar
  27. 24.
    Hoefs, E. V., Monnier, J. R., and Keulks, G. W. J. Catalysis 57, 331 (1979).CrossRefGoogle Scholar
  28. 25.
    Ueda, W., Moro-oka, Y., and Ikawa, T., J. Chem. Soc. Faraday Trans. I 78, 495 (1982).CrossRefGoogle Scholar
  29. 26.
    Glaeser, L. C, Brazdil, J. F., Hazle, M. A., Mehicic, M., Grasselli, R. K., J. Chem. Soc. Faraday Trans. I 81, 2903 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Yoshihiko Moro-oka
    • 1
  • Wataru Ueda
    • 1
  • De-Hua He
    • 1
  1. 1.Research Laboratory of Resources UtilizationTokyo Institute of TechnologyMidori-ku, YokohamaJapan

Personalised recommendations