Skip to main content

Catalysis by Heteropoly Compounds in the Pseudoliquid Phase

  • Chapter
Dynamic Processes on Solid Surfaces

Part of the book series: Fundamental and Applied Catalysis ((FACA))

Abstract

Heteropoly compounds are useful catalysts in practical application. There are at least five large-scale catalytic processes in which heteropoly compounds are used as catalysts in the gas—solid and liquid phases. Heteropoly compounds are also suitable for fundamental studies, because their structures can be much better defined at the molecular level of polyanions than the conventional catalysts and, moreover, they have unique structural characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. T. Pope, Heteropoly and Isopoly Oxometalates, Springer-Verlag, Berlin (1983).

    Book  Google Scholar 

  2. M. Misono, N. Mizuno, K. Katamura, A. Kasai, Y. Konishi, K. Sakata, T. Okuhara, and Y. Yoneda, Bull. Chem. Soc. Jpn. 55, 400 (1982)

    Article  CAS  Google Scholar 

  3. M. Misono, Stud. Surf. Sci., Catal. 20, Catalysis by Acids and Bases, Elsevier, New York (1985) p. 147.

    Chapter  Google Scholar 

  4. J. F. Keggin, Proc. Roy. Soc. A 144, 75 (1934).

    Article  CAS  Google Scholar 

  5. G. M. Brown, M. R. Neo-Spiret, W. R. Busing, and H. A. Levy, Acta Cryst. B33, 1038 (1977).

    CAS  Google Scholar 

  6. M. Misono, Proc. Climax 4th Int. Conf. Chemistry and Usage of Molybdenum (H. F. Barry and P. C. H. Mitchell, eds.), Climax Molybdenum Co., Ann Arbor (1982), p. 289.

    Google Scholar 

  7. A. Aoshima, Thesis, The University of Tokyo (1986); A. Aoshima, S. Yamamatsu, T. Yamaguchi, Nippon Kagaku Kaishi 976 (1987).

    Google Scholar 

  8. I. V. Kozhevnikov and K. I. Matveev, Appl. Catal. 5, 135 (1983).

    Article  CAS  Google Scholar 

  9. M. Otake and T. Onoda, Shokubai (catalyst) 17, 13 (1975)

    Google Scholar 

  10. T. Okohara, T. Nishimura, H. Watanabe, and M. Misono, J. Mol. Catal. 74, 247 (1992).

    Article  Google Scholar 

  11. M. Misono, Catal. Rev. 29, 269 (1987); 30, 339 (1988); Proc. 10th Intern. Congr. Catal., Budapest, 1992, Akademiaki Kiodo, Budapest, 1993, p. 69.

    Article  CAS  Google Scholar 

  12. T. Okuhara, A. Kasai, N. Hayakawa, Y. Yoneda, and M. Misono, J. Catal. 83, 121 (1983).

    Article  CAS  Google Scholar 

  13. K. Sakata, M. Furuta, M. Misono, and Y. Yoneda, ACS/CSJ Chemical Congr., Honolulu, April, 1979; M. Misono, 1st Japan—France Catal. Seminar, July 1979; M. Misono, K. Sakata, Y. Yoneda, and W. Y. Lee, Proc. 7th Intern. Congr. Catal, 1980, Kodansha, Tokyo; Elsevier, Amsterdam, (1981), p. 1047.

    Google Scholar 

  14. V. W. Day, M. F. Fredric, W. G. Klemperer, and R.-S. Liu, J. Am. Chem. Soc. 101, 491 (1979); R. D. Adams, W. G. Klemperer, and R.-S. Liu, J. Chem. Soc. Chem. Commun. 256, (1979).

    Article  CAS  Google Scholar 

  15. W. H. Knoth and R. L. Harlow, J. Am. Chem. Soc. 103, 4265 (1981)

    Article  CAS  Google Scholar 

  16. W. H. Knoth and R. D. Farlee, Inorg. Chem. 23, 4765 (1984).

    Article  CAS  Google Scholar 

  17. A. R. Siedle, C. G. Markell, P. A. Lyon, K. O. Hodgson, A. L. Roe, Inorg. Chem. 26, 219 (1987)

    Article  CAS  Google Scholar 

  18. A. R. Siedle, P. A. Lyon, S. L. Hunt, and R. P. Skarjune, J. Am. Chem. Soc. 108, 6430 (1986)

    Article  CAS  Google Scholar 

  19. A. R. Siedle, R. A. Newmark, W. B. Gleason, R. P. Skarjune, K. O. Hodgson, A. L. Roe, and V. W. Day, Solid State Ionics 26, 109 (1988).

    Article  CAS  Google Scholar 

  20. A. R. Siedle, R. A. Newmark, K. A. Brown-Wensley, R. P. Skarjune, and L. C. Haddad, Organometallics 7, 2078 (1988)

    Article  CAS  Google Scholar 

  21. A. R. Siedle and R. A. Newmark, Organometallies 8, 1442 (1989).

    Article  CAS  Google Scholar 

  22. T. Okuhara, A. Kasai, N. Hayakawa, M. Misono, and Y. Yoneda, Chem. Lett. 391, (1981).

    Google Scholar 

  23. M. Misono, Mater. Chem. Phys. 17, 103 (1987).

    Article  CAS  Google Scholar 

  24. T. Okuhara, N. Mizuno, K. Y. Lee, M. Misono, Acid-Base Catalysis, Kodansha, Tokyo, (1989), p. 421.

    Google Scholar 

  25. N. Hayakawa, T. Okuhara, M. Misono, and Y. Yoneda, Nippon Kagaku Kaishi, 356, (1982).

    Google Scholar 

  26. T. Komaya and M. Misono, Chem. Lett. 1177, (1983); M. Misono, N. Mizuno, and T. Komaya, Proc. 8th Intern. Congr. Catal. Vol. 5, Verlag Chemie, Weinheim (1984), p. 487.

    Google Scholar 

  27. N. Mizuno, T. Watanabe, and M. Misono, J. Phys. Chem. 89, 80 (1985).

    Article  CAS  Google Scholar 

  28. N. Mizuno, and M. Misono, J. Phys. Chem. 93, 3334 (1989).

    Article  CAS  Google Scholar 

  29. N. Mizuno, T. Watanabe, and M. Misono, J. Phys. Chem. 94, 890 (1990).

    Article  CAS  Google Scholar 

  30. N. Mizuno, T. Watanabe, H. Mori, and M. Misono, J. Catal. 123, 157 (1990).

    Article  CAS  Google Scholar 

  31. T. Okuhara, S. Tatematsu, K. Y. Lee, and M. Misono, Bull. Chem. Soc. Jpn. 62, 717 (1989); T. Nishimura, T. Okuhara, and M. Misono.

    Article  CAS  Google Scholar 

  32. T. Okuhara, T. Hibi, S. Tatematsu, T. Ichiki, and M. Misono, Proc. 9th Iberoamerican Symp. Catal., Lisbon (1984), p. 623.

    Google Scholar 

  33. T. Okuhara, T. Hashimoto, M. Misono, Y. Yoneda, H. Niiyama, Y. Saito, and E. Echigoya, Chem. Lett. 573, (1983).

    Google Scholar 

  34. M. Misono, T. Okuhara, T. Ichiki, T. Arai, and Y. Kanda, J. Am. Chem. Soc. 109, 5535 (1987).

    Article  CAS  Google Scholar 

  35. Y. Saito and H. Niiyama, J. Catal. 106, 329 (1987).

    Article  CAS  Google Scholar 

  36. K. Takahashi, T. Okuhara, and M. Misono, Chem. Lett. 841, (1985).

    Google Scholar 

  37. T. Okuhara, T. Arai, T. Ichiki, K. Y. Lee, and M. Misono, J. Mol. Catal. 55, 293 (1989).

    Article  CAS  Google Scholar 

  38. H. Knozinger, Angew. Chem., Int. Ed. Engl. 7, 791 (1968).

    Article  Google Scholar 

  39. K. Y. Lee, N. Mizuno, T. Okuhara, and M. Misono, Bull. Chem. Soc. Jpn. 62, 1731 (1989).

    Article  CAS  Google Scholar 

  40. J. G. Highfield and J. B. Moffat, J. Catal. 98, 245 (1986).

    Article  CAS  Google Scholar 

  41. A. C. Pavia and P. A. Giguere, J. Chem. Phys. 52, 3551 (1970).

    Article  CAS  Google Scholar 

  42. F. Klages, J. E. Gordon, and H. A. Jung, Chem. Ber. 98, 3748 (1985).

    Article  Google Scholar 

  43. N. Takezawa and H. Kobayashi, J. Catal. 25, 179 (1972)

    Article  CAS  Google Scholar 

  44. R. G. Greenler, J. Chem. Phys. 37, 2094 (1962).

    Article  CAS  Google Scholar 

  45. J. B. Black, N. J. Clayden, L. Griffiths, and J. D. Scott, J. Chem. Soc, Dalton Trans., 2765, (1984); J. B. Black, N. J. Clayden, P. L. Gai, J. D. Scott, E. M. Serwicka, and J. B. Goodenough, J. Catal. 106, 1 (1987).

    Article  CAS  Google Scholar 

  46. W. E. Farneth, R. H. Staley, P. J. Domaille, and R. D. Farlee, J. Am. Chem. Soc. 109, 4018 (1987).

    Article  CAS  Google Scholar 

  47. Y. Kanda, K. Y. Lee, S. Nakata, S. Asaoka, and M. Misono, Chem. Lett. 139, (1988).

    Google Scholar 

  48. G. A. Olah, J. Sommer, and E. Namanworth, J. Am. Chem. Soc. 89, 3576 (1967).

    Article  CAS  Google Scholar 

  49. K. Y. Lee, T. Arai, S. Nakata, S. Asaoka, T. Okuhara, and M. Misono, J. Am. Chem. Soc. 114, 2837 (1992); K. Y. Lee, Y. Kanda, N. Mizuno, T. Okuhara, M. Misono, S. Nakata, and S. Asaoka, Chem. Lett. 1175 (1988).

    Google Scholar 

  50. G. M. Bodner, S. B. Kahl, K. Bork, B. N. Storhoff, J. E. Wuller, and L. J. Todd, Inorg. Chem. 12, 1071 (1973).

    Article  CAS  Google Scholar 

  51. T. Okuhara, T. Hibi, K. Takahashi, S. Tatematsu, and M. Misono, J. Chem. Soc. Chem. Commun. 697, (1984).

    Google Scholar 

  52. T. Hibi, K. Takahashi, T. Okuhara, M. Misono, and Y. Yoneda, Appl. Catal. 24, 69 (1986)

    Article  CAS  Google Scholar 

  53. M. Misono, T. Okuhara, and N. Mizuno, Successful Design of Catalysts, Elsevier, New York, Elsevier, (1988), p. 267.

    Google Scholar 

  54. T. Baba, J. Sakai, H. Watanabe, and Y. Ono, Bull. Chem. Soc. Jpn. 55, 2555 (1982).

    Article  CAS  Google Scholar 

  55. Y. Ono, in Perspectives in Catalysis, J. M. Thomas and K. I. Zamaraev, eds., Blackwell Sci. Publ., London, 1992, p. 431.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Okuhara, T., Misono, M. (1993). Catalysis by Heteropoly Compounds in the Pseudoliquid Phase. In: Tamaru, K. (eds) Dynamic Processes on Solid Surfaces. Fundamental and Applied Catalysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1636-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1636-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1638-9

  • Online ISBN: 978-1-4899-1636-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics