Advertisement

Structural Characterization of Molecular Interface Layers Using Neutron and X-Ray Reflectivity Techniques

  • Mathias Lösche

Abstract

Synthetic microstructures used in biological research today include a variety of different systems that serve very diverse purposes and require very different fabrication and characterization techniques. One class of microstructures that is at the boundary between life and materials sciences, and certainly has been associated closer to the latter in the past, is that of molecularly structured planar interface films. In fact, Langmuir-Blodgett (LB) films,1 i.e. molecularly layered films comprised of amphiphatic organic molecules on solid substrates, have been used for many years as model systems for the investigation of molecular interactions between chromophores or donor/ acceptor couples, and for the development of molecular electronic, optical and optoelectronic devices.2

Keywords

Lipid Monolayer Fresnel Reflectivity Scatter Length Density Neutron Reflectivity Aqueous Subphase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Kuhn, D. Möbius, and H. Bücher, Spectroscopy of monolayer assemblies, in: “Physical Methods of Chemistry,” A. Weissberger and P. Rossiter, eds., Wiley Interscience, New York (1972).Google Scholar
  2. 2.
    J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, and H. Yu, Molecular monolayers and films, Langmuir 3:932 (1987).CrossRefGoogle Scholar
  3. 3.
    D. G. Hafeman, V. von Tscharner, and H. M. McConnell, Specific antibody-dependent interactions between macrophages and lipid haptens in planar lipid monolayers, Proc. Natl. Acad, Sci. USA 78:4552 (1981).CrossRefGoogle Scholar
  4. 4.
    L. K. Tamm, Lateral diffusion and fluorescence microscope studies on a monoclonal antibody specifically bound to supported phospholipid bilayers, Biochemistry 27:1450 (1988).PubMedCrossRefGoogle Scholar
  5. 5.
    H. Möhwald, Phospholipid and phospholipid-protein monolayers at the air/water interface, Annu. Rev. Phys. Chem. 41:441 (1990).PubMedCrossRefGoogle Scholar
  6. 6.
    K. Kjaer, J. Als-Nielsen, R. M. Kenn, C. Böhm, P. Tippmann-Krayer, C. A. Helm, H. Möhwald, F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, and M. Deutsch, X-ray scattering studies of organic monolayers on electrolytic solutions: arachidic acid on CdCl2, in: “Surface X-ray and Neutron Scattering,” H. Zabel and I. K. Robinson, eds., Springer, Berlin (1992).Google Scholar
  7. 7.
    J. Als-Nielsen and H. Möhwald, Synchrotron x-ray scattering studies of Langmuir films, in: “Handbook of Synchrotron Radiation, Vol. 4,” S. Ebashi, E. Rubinstein, and M. Koch, eds., Elsevier North-Holland, Amsterdam (1990).Google Scholar
  8. 8.
    D. Jacquemain, S. Grayer Wolf, F. Leveiller, M. Deutsch, K. Kjaer, J. Ais-Nielsen, M. Lahav, and L. Leiserowitz, Two-dimensional crystallography on amphiphilic molecules at the air-water interface, Angew. Chem., Int. Ed. Engl. 31:130 (1992).CrossRefGoogle Scholar
  9. 9.
    S. H. Anastasiadis, T. P. Russell, S. K. Satija, and C. F. Majkrzak, The morphology of symmetric diblock copolymers as revealed by neutron reflectivity, J. Chem. Phys. 92:5677 (1990).CrossRefGoogle Scholar
  10. 10.
    F. S. Bates, Polymer-polymer phase behavior, Science 251:898 (1991).PubMedCrossRefGoogle Scholar
  11. 11.
    K. Kjaer, J. Als-Nielsen, C. A. Helm, L. A. Laxhuber, and H. Möhwald, Ordering in lipid monolayers studied by Synchrotron x-ray diffraction and fluorescence microscopy, Phys. Rev. Letters 58:2224 (1987).CrossRefGoogle Scholar
  12. 12.
    P. Dutta, J. B. Peng, B. Lin, J. B. Ketterson, M. Prakash, P. Georgopoulos, and S. Ehrlich, X-ray diffraction studies of organic monolayers on the surface of water, Phys. Rev. Lett. 58:2228 (1987).PubMedCrossRefGoogle Scholar
  13. 13.
    D. Vaknin, K. Kjaer, J. Als-Nielsen, and M. Lösche, Structural properties of phosphatidylcholine in a monolayer at the air/water interface. Neutron reflection study and reexamination of x-ray reflection experiments, Biophys. J. 59:1325 (1991).PubMedCrossRefGoogle Scholar
  14. 14.
    C. A. Helm, H. Möhwald, K. Kjaer, and J. Als-Nielsen, Phospholipid monolayer density distribution perpendicular to the water surface. A Synchrotron x-ray reflectivity study, Europhys. Lett. 4:697 (1987).CrossRefGoogle Scholar
  15. 15.
    D. Vaknin, J. Als-Nielsen, M. Piepenstock, and M. Lösche, Recognition processes at a functionalized lipid surface observed with molecular resolution, Biophys. J. 60:1545 (1991).PubMedCrossRefGoogle Scholar
  16. 16.
    M. Born and E. Wolf, “Principles of Optics,” Pergamon Press, London (1967).Google Scholar
  17. 17.
    J. Als-Nielsen and K. Kjaer, X-ray reflectivity and diffraction studies of liquid surfaces and surfactant monolayers, in: “Phase Transitions in Soft Condensed Matter,” T. Riste and D. Sherrington, eds., Plenum Press, New York (1989).Google Scholar
  18. 18.
    T. P. Russell, X-ray and neutron reflectivity for the investigation of polymers, Mater. Sci. Rep. 5:171 (1990).CrossRefGoogle Scholar
  19. 19.
    M. Lösche and H. Möhwald, Fluorescence microscope to observe dynamical processes in monomolecular layers at the air/water interface, Rev. Sci. Instrum. 55:1968 (1984).CrossRefGoogle Scholar
  20. 20.
    M. Lösche, H. Duwe, and H. Möhwald, Quantitative analysis of surface textures in phospholipid phase transitions, J. Colloid Interf. Sci. 126:432 (1988).CrossRefGoogle Scholar
  21. 21.
    R. Blankenburg, P. Meller, H. Ringsdorf, and C. Salesse, Interaction between biotin lipids and streptavidin monolayers: Formation of oriented two-dimensional protein domains induced by surface recognition, Biochemistry 28:8214 (1989).PubMedCrossRefGoogle Scholar
  22. 22.
    L. Chaiet and F. J. Wolf, The properties of streptavidin, a biotin-binding protein produced by streptomycetes, Arch. Biochem. Biophys. 106:1 (1964).PubMedCrossRefGoogle Scholar
  23. 23.
    N. M. Green, Avidin, in: “Advances in Protein Chemistry,” M. L. Anson and J. T. Edsell, eds., Academic Press, New York (1975).Google Scholar
  24. 24.
    P. C. Weber, D. H. Ohlendorf, J. J. Wendolowski, and F. R. Salemme, Structural origins of high-affinity biotin binding to streptavidin, Science 243:85 (1989).PubMedCrossRefGoogle Scholar
  25. 25.
    W. A. Hendrickson, A. Pähler, J. L. Smith, Y. Satow, E. A. Merritt, and R. P. Phizackerley, Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation, Proc. Natl. Acad. Sci. USA 86:2190 (1989).PubMedCrossRefGoogle Scholar
  26. 26.
    M. Ahlers, R. Blankenburg, D. W. Grainger, P. Meller, H. Ringsdorf, and C. Salesse, Specific recognition and formation of two-dimensional streptavidin domains in monolayers: Applications to molecular devices, Thin Solid Films 180:93 (1989).CrossRefGoogle Scholar
  27. 27.
    S. A. Darst, M. Ahlers, P. H. Meller, E. W. Kubalek, R. Blankenburg, H. O. Ribi, H. Ringsdorf, and R. D. Kornberg, Two-dimensional crystals of streptavidin on biotinylated lipid layers and their interactions with biotinylated macromolecules, Biophys. J. 59:387 (1991).PubMedCrossRefGoogle Scholar
  28. 28.
    D. Vaknin, K. Kjaer, J. Als-Nielsen, and M. Lösche, A new liquid surface neutron reflectometer and its application to the study of DPPC in a monolayer at the air/water interface, Makromol Chem., Macromol Symp. 46:383 (1991).CrossRefGoogle Scholar
  29. 29.
    M. C Wiener and S. H. White, Fluid bilayer structure determination by the combined use of x-ray and neutron diffraction II. “Composition-space” refinement method, Biophys. J. 59:174 (1991).PubMedCrossRefGoogle Scholar
  30. 30.
    M. K. Sanyal, S. K. Sinha, K. G. Huang, and B. M. Ocko, X-ray-scattering study of capillary-wave fluctuations at a liquid surface, Phys. Rev. Letters 66:628 (1991).CrossRefGoogle Scholar
  31. 31.
    R. D. Nargessi and D. S. Smith, Fluorometric assays for avidin and biotin, Methods Enzymol. 122:67 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    D. Vaknin, K. Kjaer, H. Ringsdorf, R. Blankenburg, M. Piepenstock, A. Diederich, and M. Lösche, manuscript in preparation.Google Scholar
  33. 33.
    G. Büldt, H. U. Gaily, J. Seelig, and G. Zaccai, Neutron diffraction studies on phosphatidylcholine model membranes. I. Head group formation, J. Mol Biol 134:673 (1979).PubMedCrossRefGoogle Scholar
  34. 34.
    G. Zaccai, G. Büldt, A. Seelig, and J. Seelig, Neutron diffraction studies on phosphatidylcholine model membranes. II. Chain conformation and segmental order, J. Mol. Biol 134: 693 (1979).PubMedCrossRefGoogle Scholar
  35. 35.
    M. C Wiener, R. M. Suter, and J. F. Nagle, Structure of the fully hydrated gel phase of dipalmitoylphosphatidylcholine, Biophys. J. 55:315 (1989).PubMedCrossRefGoogle Scholar
  36. 36.
    D. Oldani, H. Hauser, B. W. Nichols, and M. C. Phillips, Monolayer characteristics of some glycolipids at the air-water interface, Biochim. Biophys. Acta 382:1 (1975).PubMedCrossRefGoogle Scholar
  37. 37.
    S. W. Hui, M. Cowden, D. Papahadjopoulos, and D. F. Parsons, Electron diffraction study of hydrated phospholipid single bilayers. Effects of temperature, hydration and surface pressure of the “precursor” monolayer, Biochim. Biophys. Acta 382:265 (1975).PubMedCrossRefGoogle Scholar
  38. 38.
    A. Blume, A comparative study of the phase transitions of phospholipid bilayers and monolayers, Biochim. Biophys. Acta 557:32 (1979).PubMedCrossRefGoogle Scholar
  39. 39.
    J. F. Nagle, Theory of the main lipid bilayer transition, Ann. Rev. Phys. Chem. 31:157 (1980).CrossRefGoogle Scholar
  40. 40.
    H. Dörfler and G. Brezesinski, Phasenumwandlungserscheinungen in Lecithin/Wasser-Systemen I. Einfluß des Wassers auf die Phasenumwandlungen homologer Lecithin/Wasser-Monohydrate, Coll. Polym. Sci. 261:286 (1983) [In German].CrossRefGoogle Scholar
  41. 41.
    G. I. King and S. H. White, Determining bilayer hydrocarbon thickness from neutron diffraction measurements using strip-function models, Biophys. J. 49:1047 (1986).PubMedCrossRefGoogle Scholar
  42. 42.
    G. Schmidt and W. Knoll, Densitometric characterization of aqueous lipid dispersions, Ber. Bunsenges. Phys. Chem. 89:36 (1985).CrossRefGoogle Scholar
  43. 43.
    K. D. Dreher and D. F. Sears, Stearic acid monolayers on heavy water, Trans. Faraday Soc. 62:741 (1966).CrossRefGoogle Scholar
  44. 44.
    G. Lipka, B. Z. Chowdhry, and J. M. Sturtevant, A comparison of the phase transition properties of 1,2-diacylphosphatidylcholines and 1,2-diacylphosphatidylethanolamines in H2O and D2O, J. Phys. Chem. 88:5401 (1984).CrossRefGoogle Scholar
  45. 45.
    M. C. Wiener, S. Tristram-Nagle, D. A. Wilkinson, L. E. Campbell, and J. F. Nagle, Specific volumes of lipids in fully hydrated bilayer dispersions, Biochim. Biophys. Acta 938:135 (1988).PubMedCrossRefGoogle Scholar
  46. 46.
    D. Vaknin, M. Piepenstock, and M. Lösche, manuscript in preparation.Google Scholar
  47. 47.
    F. S. Ligler and S. Rabbany, Biological microstructures in biosensors, this volume.Google Scholar
  48. 48.
    G. L. Johnson and N. Dhanasekaran, The G-protein family and their interaction with receptors, Endocrine Rev. 10:317 (1989).CrossRefGoogle Scholar
  49. 49.
    H. R. Bourne, D. A. Sanders, and F. McCormick, The GTPase superfamily: conserved structure and molecular mechanism, Nature 349:117 (1991).PubMedCrossRefGoogle Scholar
  50. 50.
    E. E. Uzgiris and R. D. Kornberg, Two-dimensional crystallization technique for imaging macromolecules, with an application to antigen-antibody-complement complexes, Nature 301:125 (1983).PubMedCrossRefGoogle Scholar
  51. 51.
    G. Mosser and A. Brisson, Conditions of two-dimensional crystallization of cholera toxin B-subunit on lipid films containing ganglioside GM1, J. Struct Biol 106:191 (1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Mathias Lösche
    • 1
  1. 1.Institute of Physical ChemistryMainz UniversityMainzGermany

Personalised recommendations