Skip to main content

Preparation and Characterization of Antibody Films on Lithium Niobate Surfaces

  • Chapter
Book cover Synthetic Microstructures in Biological Research

Abstract

Lithium niobate is a piezoelectric substrate of interest for applications as an electro-acoustic immunosensor. The activation of lithium niobate substrates with antibody films is carried out by using the standard immobilization technique, i.e. silanization with 3-aminopropyltriethoxysilane prior to linkage of antibody molecules via a glutaraldehyde crosslinker. The cleaning of the substrate prior to silanization was achieved by microwave and ozone/uv cleaning. X-ray photoelectron spectra show a significant reduction of impurities compared to cleaning with organic solvents only. Silanization was performed in toluene solution, toluene vapour, and by chemical vapour deposition. The differences between the various silanization processes for antigen binding examined by enzyme linked immunosorbent assay are small. Using protein G as an immobilized binding molecule for antibodies the binding capacity was enhanced by 40%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Cuatrecasas, M. Wilchek, and C. B. Antinsen, Selective enzyme purification by affinity chromatography, Proc. Nat. Acad. Sci. USA 61:636 (1968).

    Article  PubMed  CAS  Google Scholar 

  2. P. Cuatrecasas, Protein purification by affinity chromatography, J. Biol. Chem. 245:3059 (1970).

    CAS  Google Scholar 

  3. K. Mosbach, Immobilized enzymes, Trends Biochem. Sci. 5:1 (1980).

    Article  CAS  Google Scholar 

  4. J. L. Guesdon and S. Avrameas, Solid phase enzyme immunoassays, Appl. Biochem Bioeng. 3:207 (1981).

    CAS  Google Scholar 

  5. W. H. Scouten, A survey of enzyme coupling techniques, Meth. Ewymol 135:30 (1987).

    Article  CAS  Google Scholar 

  6. F. Josse, Z. A. Shana, D. T. Haworth, S.. Liew, and M. Grunze, On the use of ZX-LiNbO3 acoustic plate mode devices detectors for dilute electrolytes, Sens, and Act, to appear (1992).

    Google Scholar 

  7. R. Dahint, M. Grunze, F. Josse, and J. C. Andle, Probing of strong and weak electrolytes with acoustic wave fields, Sens, and Act., submitted (1992).

    Google Scholar 

  8. J. Andle, J. Vetelino, R. Lec, and D. McAllister, An acoustic plate mode immunosensor, Proc. IEEE Ultras. Symp. pg 579 (1989).

    Google Scholar 

  9. J. Andle, J. Vetelino, M. Lade, and D. McAllister, Detection of nucleic acid hybridization with an acoustic plate mode sensor, to be published.

    Google Scholar 

  10. I. Haller, Covalently attached organic monolayers on semiconductor surfaces, J. Am. Chem. Soc. 100:8050 (1978).

    Article  CAS  Google Scholar 

  11. U. Jönsson, M. Malqvist, and I. Rönnberg, Immobilization of immunoglobulines on silica surfaces, 227:363 (1985).

    Google Scholar 

  12. K. L. Mittal and D. F. O’Kane, Vapor deposited silanes and other coupling agents, J. Adhes. 8:93 (1976).

    Article  CAS  Google Scholar 

  13. H. H. Weethall and M. Lynn, “Immobilized Enzymes, Antibodies, Cells, Peptides: Preparation and Characterization,” M. Dekkar, Inc., New York (1975).

    Google Scholar 

  14. J. H. Peters, M. Schulze, and M. Grol, “Monoklonale Antikörper,” Springer Verlag, Heidelberg, New York (1990).

    Book  Google Scholar 

  15. L. Björck and G. Kronvall, Purification and some properties of streptococcal protein G. a novel IgG binding reagent, J. Immunol. 133:969 (1984).

    Google Scholar 

  16. B. Åkerström, T. Brodin, K. Reis, and L. Björck, Protein G: a powerful tool for binding and detection of monoclonal and polyclonal antibodies, J. Immunol. 135:2589 (1985).

    PubMed  Google Scholar 

  17. B. Åkerström and L. Björck, A physicochemical study of protein G., a molecule with unique immunoglobulin G-binding properties, J. Biol. Chem. 261:10240 (1986).

    Google Scholar 

  18. R. Hilpert, F. Binder, J. Ritter, S. Drost, C. Klößinger, S. Koch, E. Müller, I. Ruge, and M. H. Zenk, Biosensoren zur Gewässerüberwachung, 9. Dechema Jahrestagung der Biotechnologen, Berlin 1991, p. 257

    Google Scholar 

  19. U. Jönsson, G. Olofsson, M. Malmqvist, and I. Rönnberg, Chemical vapour deposition of silanes, Thin Solid Films 124:117 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seeger, S., Bierbaum, K., Dahint, R., Feng, C.L., Mantar, M., Grunze, M. (1992). Preparation and Characterization of Antibody Films on Lithium Niobate Surfaces. In: Schnur, J.M., Peckerar, M., Stratton, H.M. (eds) Synthetic Microstructures in Biological Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1630-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1630-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1632-7

  • Online ISBN: 978-1-4899-1630-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics