Microdomains in Polymerizable Diacetylenic Phosphatidylcholine Monolayers

  • Sek Wen Hui
  • Hao Yu
  • Zhenchun Xu
  • Robert Bittman


Monolayers of phospholipids may be used as substrates to stabilize membrane proteins on solid supports, in the fabrication of biosensors and other implantable devices. The stability of phospholipid monolayers can be significantly improved by using polymerizable lipids such as photo-polymerizable diacetylenic lipids. These lipids, once polymerized, form extremely stable structures which may be used as surface coating for biocompatible materials, and carrier vehicles for drugs, among other applications.1–3 The fonction and reliability of the surface coating depend to a large extent on the microstructure of the monolayer used. Recent studies have shown that monolayers of lipids on the air-water interface are by no means uniform in structure.4–7 Phase separated domains exist in most monolayers under certain surface pressure. The microscopic domains in monolayer become increasingly important as more microdevices are fabricated. One may even make use of the micro textures in monolayers to delineate spatially separated functional areas on a device surface. To this end, one must understand the physical chemistry of the formation of these microdomains to ascertain the uniformity and stability of the surface coating or deposit.


Surface Pressure Solid Domain Phospholipid Monolayer High Surface Pressure Formvar Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. P. Gaber, J. M. Schnur, and D. Chapman, eds., “Biotechnological Applications of Lipid Microstructures,” Plenum Press, New York (1988).Google Scholar
  2. 2.
    S. L. Regan, Polymerized phosphatidylcholine vesicles as drug carriers. Ann. N.Y. Acad. Sci. 446:296–307 (1985).CrossRefGoogle Scholar
  3. 3.
    D. S. Johnston, L. R. McLean, M. A. Whittam, A. D. Clark, and D. Chapman, Spectra and physical properties of liposomes and monolayers of polymerizable phospholipids containing diacetylene groups in one or both acyl chains. Biochem. 22:3194–3202 (1983).CrossRefGoogle Scholar
  4. 4.
    H. M. McConnell, Structures and transitions in lipid monolayers at the air-water interface. Annu. Rev. Phys. Chem. 42:171–195 (1991).CrossRefGoogle Scholar
  5. 5.
    H. Möhwald, H., Phospholipid and phospholipid-protein monolayers at the air/water interface. Annu. Rev. Phys. Chem. 41:441–76 (1990).PubMedCrossRefGoogle Scholar
  6. 6.
    R. M. Weis, R. M., Fluorescence microscopy of phospholipid monolayer phase transitions. Chemistry and Physics of Lipids 57:227–239 (1991).PubMedCrossRefGoogle Scholar
  7. 7.
    R. M. Weis, R. M. and H. M. McConnell, Cholesterol stabilizes the crystal-liquid interface in phospholipid monolayers. J. Phys. Chem. 89:4453–4459 (1985).CrossRefGoogle Scholar
  8. 8.
    P. Yager, P. E. Schoen, C. Davies, R. Price, and A. Singh, Structure of lipid tubules formed from a polymerizable lecithin. Bioph. J. 48:899–906 (1985).CrossRefGoogle Scholar
  9. 9.
    M. J. Caffrey, J. Hogan, and A. S. Rudolph, Diacetylenic lipid microstructures: structural characterization by x-ray diffraction and comparison with the saturated phosphatidylcholine analogue. Biochem. 30:2134–2146 (1991).CrossRefGoogle Scholar
  10. 10.
    A. L. Plant, D.M. Benson, and G. L. Trusty, Probing the structure of diacetylenic phospholipid tubules with fluorescent lipophiles. Biophys. J. 57:925–933 (1990).PubMedCrossRefGoogle Scholar
  11. 11.
    R. Treanor and M. D. Pace, Microstructure, order and fluidity of l,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine(DC8,9PC), a polymerizable lipid, by ESR and NMR. Biochimica et Biophysica Acta. 1046:1–11 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    H. H. Hub, B. Hupfer, H. Koch, and H. Ringsdorf, Polymerization of lipid and lysolipid like diacetylenes in monolayers and liposomes, J. Macromol. Set-Chem. A15:701–715 (1981).CrossRefGoogle Scholar
  13. 13.
    B. Hupfer, B. and H. Ringsdorf, Spreading and polymerization behavior of diacetylenic phospholipids at the gas-water interface, Chemistry and Physics of Lipids 33:263–282 (1983).PubMedCrossRefGoogle Scholar
  14. 14.
    S. W. Hui, S. W. M. Cowden, D. Papahadjopoulos, and D. F. Parsons, Electron diffraction study of hydrated phospholipid single bilayers: effects of temperature hydration and surface pressure of the “precursor” monolayer. Biochimica Biophysica Acta. 382:265–275 (1975).CrossRefGoogle Scholar
  15. 15.
    A. Fischer, M. Lösche, H. Möhwald, and E. Sackmann, On the nature of the lipid monolayer phase transition J. Physique Lett. 45:L-785-L-791 (1984).CrossRefGoogle Scholar
  16. 16.
    D. J. Keller, H. M. McConnell, and V. T. Moy, Theory of superstructures in lipid monolayer phase transitions. J. Phys. Chem. 90:2311–2315 (1986).CrossRefGoogle Scholar
  17. 17.
    H. M. McConnell and V. T. Moy, Shapes of finite two-dimensional lipid domains. J. Phys. Chem. 92:4520–4525 (1988).CrossRefGoogle Scholar
  18. 18.
    Z. Xu, Z., H.-S. Byun, and R. Bittman, Synthesis of photopolymerizable long-chain conjugated diacetylenic acids and alcohols from butadiyne synthons. J. Org. Chem. 56:7193–7198 (1991).Google Scholar
  19. 19.
    T. Thuren, T., J. A. Virtanen, P. Vainio, and P. K. J. Kinnunen, Hydrolysis of 1-triacontanoyl-2-(pyren-l-yl)hexano-sn-glycero-3-phosphocholine by human pancreatic phospholipase A2. Chemistry and Physics of Lipids 33:283–292 (1983).PubMedCrossRefGoogle Scholar
  20. 20.
    H. Matuo, D. K. Rice, D. M. Balthasar, and D. A. Cadenhead, Mixed monolayer studies of 12-hydroxyoctadecanoic acid and its esters, Chem. Phys. Lipids 30:367–380 (1982).CrossRefGoogle Scholar
  21. 21.
    H. Yu and S. W. Hui, Microdomain structures of methylation effects of phosphatidylethanolamine monolayers, Chem. Phys. Lipids (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Sek Wen Hui
    • 1
  • Hao Yu
    • 1
  • Zhenchun Xu
    • 2
  • Robert Bittman
    • 2
  1. 1.Biophysics DepartmentRoswell Park Cancer InstituteBuffaloUSA
  2. 2.Department of Chemistry and BiochemistryQueens College of the City University of New YorkFlushingUSA

Personalised recommendations