Skip to main content

Interferometric Investigations of Bilayer Lipid Membrane Deformation and Flexoelectricity

  • Chapter
Synthetic Microstructures in Biological Research

Abstract

Bimolecular thick, bilayer or black, lipid membranes (BLMs) provide the thinnest man-made semipermeable barrier which separates two compartments containing aqueous solutions.1,2 Advantage has been taken of BLMs to model the functioning of the biological membrane by incorporating synthetic and natural ion carriers.3,4 Sensitive electrical measurements, voltage clamping, and single-channel recording have formed the bases of our current understanding of biological transport mechanisms.4,5 More recently, BLMs have been utilized as matrices for supporting size-quantized semiconductor and magnetic particles which mimic bulk photoelectrical and magneto-optical devices.6,7 Continued utilization of BLMs for biophysical and solid-state modeling requires an understanding of their physical-mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. H. Fendler, “Membrane Mimetic Chemistry,” Wiley-Interscience, New York (1982).

    Google Scholar 

  2. H. T. Tien, “Bilayer Lipid Membranes (BLM) Theory & Practice,” Marcel Dekker, New York (1974).

    Google Scholar 

  3. C. Miller, “Ion Channel Reconstitution,” Plenum, New York (1986).

    Book  Google Scholar 

  4. B. Hille, “Ionic Channels of Excitable Membranes,” Sinaver Associates, Sunderland, MA (1984).

    Google Scholar 

  5. B. Sakmann and E. Neher, “Single-Channel Recording,” Plenum, New York (1983).

    Google Scholar 

  6. X. K. Zhao, S. Baral, R. Rolandi, and J. H. Fendler, Semiconductor particles in bilayer lipid membranes (BLMs). Formation, characterization, and photoelectrochemistry, J. Am. Chem. Soc. 110:1012 (1988);

    Article  CAS  Google Scholar 

  7. X. K. Zhao and J. H. Fendler, Surface enhanced spectroscopy on bilayer lipid membranes, J. Phys. Chem. 92:3350 (1988);

    Article  CAS  Google Scholar 

  8. Y. Yuan, P. Tundo, and J. H. Fendler, Photopolymerization of vesicles prepared from n-Hexadecyl ll-(4-vinylbenzamide)undecyl hydrogen phosphate and from mixtures of dioctadecyldimethylammonium bromide and n-Hexadecyl ll-(4-vinylbenzamide)undecyl hydrogen phosphate, Macromolecules 22:29 (1989);

    Article  CAS  Google Scholar 

  9. X. K. Zhao, P. J. Hervé, and J. H. Fendler, Magnetic particulate thin films on bilayer lipid membranes (BLMs), J. Phys. Chem. 93:908 (1989);

    Article  CAS  Google Scholar 

  10. S. Baral and J. H. Fendler, Cadmium-sulfide-mediated photoelectric effects in bilayer lipid membranes, J. Am. Chem. Soc. 111:1604 (1989).

    Article  CAS  Google Scholar 

  11. J. Kutnik and H. T. Tien, Deposition of metallic and semiconducting layers onto bilayer lipid membranes, Photochem. Photobiol. 46:413 (1987).

    Article  CAS  Google Scholar 

  12. G. Picard, N. Denicourt, and J. H. Fendler, Simultaneous electrical and optical interferometric measurements of pressure- and applied-potential-induced bilayer lipid membrane deformation, J. Phys. Chem. 95:3705 (1991).

    Article  CAS  Google Scholar 

  13. W. H. Steel, “Interferometry,” 2nd Edition, Cambridge University Press, Cambridge, U.K. (1903).

    Google Scholar 

  14. J. N. Israelachvilli, “Intermolecular and Surface Forces,” Academic Press, New York (1982).

    Google Scholar 

  15. A. Moran and A. Hani, Surface tension of an artificial bileaflet membrane in comparison to parent lipid solution — water interfacial tension, Chem. Phys. Lipids 4:169 (1970).

    Article  PubMed  CAS  Google Scholar 

  16. A. G. Petrov and V. S. Sokolov, Curvature effect in black lipid membranes: dynamic characteristics, Eur. Biophys. J. 13:139 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Todorov, A.T., Petrov, A.G., Brandt, M.O., Picard, G., Denicourt, N., Fendler, J.H. (1992). Interferometric Investigations of Bilayer Lipid Membrane Deformation and Flexoelectricity. In: Schnur, J.M., Peckerar, M., Stratton, H.M. (eds) Synthetic Microstructures in Biological Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1630-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1630-3_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1632-7

  • Online ISBN: 978-1-4899-1630-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics