Skip to main content

An Elevation of Internal Calcium Occurring Via L-Type Channels Mediates Neural Induction in the Amphibian Embryo

  • Chapter
Organization of the Early Vertebrate Embryo

Part of the book series: NATO ASI Series ((NSSA,volume 279))

Abstract

In amphibians, neural induction takes place during gastrulation, as a consequence of an interaction between the chordamesoderm (inductive tissue) and the ectoderm (target tissue). The mechanism of neural induction has been the subject of many investigations more than 60 years (Saxén, 1989; Duprat et al. 1990; Westenbroeck et al. 1990). Although the natural inducer still remains unidentified, numerous, apparently unrelated, substances have been found to act as inducers (Tiedemann and Born, 1978; Saxén, 1989). Recently an endogeneous soluble protein, noggin, has been shown to have neural inducing activity in Xenopus (Lamb et al. 1993). It has been also suggested that the inhibition of the signal transduced by the activin type II -receptor leads to neuralization (Hemmati-Brivanlou and Melton, 1994). Follistatin, that blocks activin activity by direct binding of activin protein, can induce neural tissue in vivo (Hemmati-Brivanlou et al. 1994). Furthermore, it has also been demonstrated that the inducing signal from the chordamesoderm is recognized at the level of the plasma membrane of the target tissue (Tiedemann and Born, 1978; Takata et al. 1981; Gualandris et al. 1985). Therefore it has become important to define the mechanism of transduction of the neuralizing signal. Using Xenopus embryos, it has been suggested that activation of protein kinase C (PKC) by phorbol esters, leads to neural induction in a limited part of ectodermal expiants (Davids et al. 1987; Otte et al. 1988, 1989). An increase in cAMP dependent protein kinase (PKA) activity during neural induction, has also been observed (Otte et al. 1989), suggesting a cross-talk between PKA and PKC., during this process. These data suggest that PKC pathway is activated by neural induction to initiate neural-specific gene expression. Additional support for a role of a PKC pathway in neural induction is provided by the phorbol ester (TPA) induction of the neural-specific src + mRNA in dorsal competent ectoderm of Xenopus embryo (Collett and Steele, 1992, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, D., and Eckert, R. (1987) Voltage activated calcium channels that must be phosphorylated to respond to membrane depolarization, Proc.Natl.Acacl.Sci.(USA) 84: 2518–2522.

    Article  CAS  Google Scholar 

  • Barth. L.G., and Barth. L.J. (1964) Sequential induction of the presumptive epidermis of the Rana pipiens gastrula, Biol.Bull. 127: 413–427.

    Article  Google Scholar 

  • Berridge, M.J. (1993) Inositol trisphophate and calcium signalling, Nature 361: 315–325.

    Article  PubMed  CAS  Google Scholar 

  • Blackshaw, S.E., and Warner, A.E. (1976) Alterations in resting membrane properties at neural plate stages of development of the nervous system, J. Physiol. (London) 255: 231–247.

    CAS  Google Scholar 

  • Borsotto, M., Barhanin, J., Norman, R.I., and Lazdunski, M. (1984) Purification of the dihydropyridine receptor of the voltage-dependent Ca2+ channel from skeletal muscle transverse tubules using 3H-PN 200-110, Biochem.Biophys.Res.Comm. 122: 1357–1366.

    Article  PubMed  CAS  Google Scholar 

  • Breckenridge, L.J., and Warner, A.E. (1982) Intracellular sodium and the differentiation of amphibian embryonic neurones, J.Physiol. (London) 332: 393–413.

    CAS  Google Scholar 

  • Catterall. W.A. (1991) structure and function of voltage-gated sodium and calcium channels, Curr. Op. Neurobiol. 1: 5–13.

    Article  PubMed  CAS  Google Scholar 

  • Collett, J.W., and Steele, R.E. (1992) Identification and developmental expression of Src + mRNAs in Xenopus laevis, Dev.Biol. 152: 194–198.

    Article  PubMed  CAS  Google Scholar 

  • Collett, J.W., and Steele, R.E. (1993) Alternative splicing of a neural-specific Src mRNA (Src +) is a rapid and protein synthesis-independent response to neural induction in Xenopus laevis, Dev.Biol. 158: 487–495.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, B.M., and Catterall, W.A. (1984) Purification of the calcium receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules, Biochemistry 23: 2113–2118.

    Article  PubMed  CAS  Google Scholar 

  • Dale, L., and Slack, J.M.W. (1987) regional specification within the mesoderm of early embryos of Xenopus laevis, Development 99: 279–295.

    Google Scholar 

  • Davids, M., Loppnow, B., Tiedemann, H., and Tiedemann, H. (1987) Neural differentiation of amphibian gastrula ectoderm exposed to phorbol ester, Roux’s Arch.Dev.Biol. 196: 137–140.

    Article  Google Scholar 

  • Duprat, A.M., Saint-Jeannet, J.P., Pituello, F., Huang, S., Boudannaoui. S., Kan, P., and Gualandris, L. (1990) From presumptive ectoderm to neural cells in an amphibian. Int.J.Dev.Biol. 34: 149–156.

    PubMed  CAS  Google Scholar 

  • Fukui, A. and Ashima, M. (1994) Control of cell differentiation and morphogenesis in amphibian development, Int. J. Dev. Biol. 38: 257–266.

    PubMed  CAS  Google Scholar 

  • Gallien, L., and Durocher, M. (1957) Table chronologique du développement chez Pleurodeles waltl (Michah). Bull. Biol. Fr. Belg. 91: 97–114.

    Google Scholar 

  • Gerhart, J.G. (1980) Mechanisms regulating pattern formation in the amphibian egg and the early embryo. In “Biological regulation and development” (R.F. Goldberger ed.) pp 133–315. Plenum Press, New York.

    Chapter  Google Scholar 

  • Greenberg, D., Carpenter, C.L., and Messing, R.O. (1987) Lectin-induced enhancement of voltage-dependent calcium flux and calcium channel antagonist binding, J.Neurochem. 48: 888–894.

    Article  PubMed  CAS  Google Scholar 

  • Grunz, H.(1984), early embryonic induction: the ectodermal target cells. In “the role of cell interactions in early neurogenesis. Serie A” (A.M. Duprat, A.C. Kato, and M. Weber, Ed.), Life sci. Ed. Ed. Vol. 77, pp. 21–38. Plenum Press, New York.

    Google Scholar 

  • Grunz, H. (1985a) Information transfer during embryonic induction in amphibians. J. Embryol. exp. Morph. 89: 349–364.

    PubMed  Google Scholar 

  • Grunz, H. (1985b) effects of concanavalin A and vegetalizing factor on the outer and inner ectoderm layers of early gastrulae of Xenopus laevis after treatment with cytochalasin B, Cell Diff. 16: 83–92.

    Article  CAS  Google Scholar 

  • Gualandris, L., Rouge, P., and Duprat, A.M. (1985) Target cell surface glycoconjugates and neural induction in an amphibian, J. Embryol. exp. Morph. 86: 39–51.

    PubMed  CAS  Google Scholar 

  • Gurdon, J.B. (1987) embryonic induction. Molecular prospects, Development 99: 285–306.

    PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou, A., and Melton, D.A.(1994) Inhibition of activin receptor signaling promotes neuralization in Xenopus, Cell 77: 273–281.

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou, A., Kelly, O.G., and Melton, D.A.(1994) Follistatin, an antagonist of activin, is expressed in the spemann organizer and displays direct neuralizing activity, Cell 77: 283–295.

    Article  PubMed  CAS  Google Scholar 

  • Kao, J.P.Y., Harootunian, A.T., and Tsien, R.Y. (1989) Photochemically generated cytosolic calcium pulses and their detection by fluo-3, J.Biol.Chem. 264: 8179–8184.

    PubMed  CAS  Google Scholar 

  • Lamb, T.M., Knecht, A.K., Smith, W.C., Stachel, S.E., Economides, A.N., Stahl, N., Yancopolous, G.D., and Harland, R.M. (1993) Neural induction by the secreted polypeptide noggin, Science 262: 713–718.

    Article  PubMed  CAS  Google Scholar 

  • Leikola, A. (1963) The mesodermal and neural competence of isolated gastrula ectoderm studied by heterogenous inductors, Ann. Zool. Soc. 25: 2–50.

    Google Scholar 

  • McPherson, P.S., and Campbell, K.P. (1993) The ryanodine receptor/Ca2+ release channel, J.Biol.Chem. 268: 13765–13768.

    PubMed  CAS  Google Scholar 

  • Messenger, E.A., and Warner, A.E. (1979) The function of the sodium pump during differentiation of amphibian embryonic neurons, J.Physiol. (London) 292: 85–105.

    CAS  Google Scholar 

  • Moreau, M., Guerrier, P., and Vilain, J.P. (1984) Ionic regulation of oocyte maturation. In “Biology of Fertilization” (Metz, C.B., Monroy, A. Eds.) pp. 299–345. Vol. 1. Acad. Press, New York

    Google Scholar 

  • Moreau, M., Leclerc, C., Gualandris-Parisot, L., and Duprat, A.-M. (1994) Increased internal Ca2+ mediates neural induction in the amphibian embryo, Proc. Natl. Acad. Sci. (USA): (in press).

    Google Scholar 

  • Newport, J. and Kishner, M. (1982a) A major developmental transition in early embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30: 675–686.

    Article  PubMed  CAS  Google Scholar 

  • Newport, J. and Kishner, M. (1982b) A major developmental transition in early embryos: II. Control of the onset of transcription. Cell 30: 687–696.

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop, P.D., and Faber, J. (1967) Normal table of Xenopus laevis: a systematic and chronological survey of the development of the fertilized egg till the end of metamorphosis. North Holland, Amsterdam.

    Google Scholar 

  • Orte, A.P., Koster, C.H., Snoek, G.T., and Durston, A.J. (1988), Protein kinase C mediates neural induction in Xenopus laevis, Nature 334: 618–620.

    Article  Google Scholar 

  • Otte, A.P., van Run, P., Heideveld, M., van Driel, R., and Durston, A.J. (1989) Neural induction is mediated by cross-talk between the protein kinase C and cyclic AMP pathways, Cell 58: 641–648.

    Article  PubMed  CAS  Google Scholar 

  • Pituello, F., Homburger, V., Saint-Jeannet, J.P., Audigier, Y., Bockaert, J., and Duprat, A.M. (1991) Expression of the guanine nucleotide-binding protein Go correlates with the state of neural competence in the amphibian embryo, Dev.Biol. 145: 311–322.

    Article  PubMed  CAS  Google Scholar 

  • Saint-Jeannet, J.P., Huang, S., and Duprat, A.M. (1990) Modulation of neural commitment by changes in target cell contacts in Pleurodeles waltl. Dev.Biol. 141: 93–103.

    Article  PubMed  CAS  Google Scholar 

  • Sater, A.K., Alderton, J.M., and Steinhardt, R.A. (1994) An increase in intracellular pH during neural induction in Xenopus, Development 120: 433–442.

    PubMed  CAS  Google Scholar 

  • Saxen, L. (1989) Neural induction, Int.J.Dev.Biol. 33: 21–48.

    PubMed  CAS  Google Scholar 

  • Schmalzing, G., Eckard, P., Kröner, S., and Passow, H. (1990) Down regulation of surface sodium pump by endocytosisduring meiotic maturation of Xenopus oocytes, J. membr. Biol. 79: 203–210.

    Google Scholar 

  • Schmalzing, G., and Kröner, S. (1991) Micromolar free calcium exposes ouabain-binding sites in digitonin-permeabilized Xenopus laevis oocytes, Biochem.J. 269: 757–766.

    Google Scholar 

  • Shearman, M.S., Sekiguchi, K., and Nishizuka, Y.(1989) Modulation of ion channel activity: a key function of the protein kinase C enzyme family, Pharmacol. Rev. 41: 211–237.

    PubMed  CAS  Google Scholar 

  • Sheng, M., and Greenberg, M.E. (1990), The regulation and function of c-fos and other immediate early genes in the nervous system, Neuron 4: 477–485.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, M., McFadden, G., and Greenberg, M.E. (1990) Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB, Neuron 4: 571–582.

    Article  PubMed  CAS  Google Scholar 

  • Slack, C., Warner, A.E., and Warren, R.L. (1973) The distribution of sodium and potassium in amphibian embryos during early development, J.Physiol. (London) 232: 297–312.

    CAS  Google Scholar 

  • Slack, J.M.W. (1994) Inducing factors in Xenopus early embryos, Curr. Biol. 4: 116–126.

    Article  PubMed  CAS  Google Scholar 

  • Soula, C., Sagot, Y., Cochard, P., and Duprat, A.M.(1990) Astroglial differentiation from neuroepithelial precursor cells of amphibian embryos: an in vivo and in vitro analysis, Int.J. Dev.Biol. 34: 351–364.

    PubMed  CAS  Google Scholar 

  • Strong, J.A., Fox, A.P., Tsien, R.W., and Kaczmarek, L.K. (1987), Stimulation of protein kinase C recruits covert calcium channels in Aplysia bag cell neurons. Nature 325: 714–717.

    Article  PubMed  CAS  Google Scholar 

  • Takata, K., Yamamoto, K., and Ozawa, R. (1981) Use of lectins as probes for analyzing embryonic induction, Roux’s Arch.Dev.Biol. 190: 92–96.

    CAS  Google Scholar 

  • Tiedemann, H., and Born, J.(1978) Biological activity of vegetalizing and neuralizing producing factors after binding to BAC-cellulose and CNBr-Sepharose. Roux’s Arch.Dev.Biol. 184: 285–299.

    CAS  Google Scholar 

  • Westenbroeck, R.E., Ahlijanian, M.K., and Catterall, W.A. (1990) Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons, Nature 347: 281–284.

    Article  Google Scholar 

  • Woodland, H.R. (1989) Mesoderm formation in Xenopus, Cell 59: 767–770.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J., and Tsien, R.W. (1993) Enhancement of N-and L-type calcium channel currents by protein kinase C in frog sympathetic neurons, Neuron 10: 127–136.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leclerc, C., Moreau, M., Gualandris-Parisot, L., Dréan, G., Canaux, S., Duprat, AM. (1995). An Elevation of Internal Calcium Occurring Via L-Type Channels Mediates Neural Induction in the Amphibian Embryo. In: Zagris, N., Duprat, A.M., Durston, A. (eds) Organization of the Early Vertebrate Embryo. NATO ASI Series, vol 279. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1618-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1618-1_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1620-4

  • Online ISBN: 978-1-4899-1618-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics