Advertisement

The Phase Space of the Wess-Zumino-Witten Model

  • G. Papadopoulos
  • B. Spence
Part of the NATO ASI Series book series (NSSB, volume 315)

Abstract

We prove that the covariant and Hamiltonian phase spaces of the Wess-Zumino-Witten model on the cylinder are diffeomorphic and we derive the Poisson brackets of the theory.

Keywords

Phase Space Poisson Bracket Symplectic Form Cauchy Surface Cauchy Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Witten, Commun. Math. Phys. 92 (1984) 455.MathSciNetADSMATHCrossRefGoogle Scholar
  2. [2]
    B. Blok, Phys. Lett. 233B (1989) 359.MathSciNetADSGoogle Scholar
  3. [3]
    A.Yu. Alekseev and S. Shatashvili, Commun. Math. Phys. 128 (1990) 197.MathSciNetADSMATHCrossRefGoogle Scholar
  4. A.Yu. Alekseev and S. Shatashvili, Commun. Math. Phys. 133 (1990) 353.MathSciNetADSMATHCrossRefGoogle Scholar
  5. [4]
    L.D. Faddeev, Commun. Math. Phys. 132 (1990) 131.MathSciNetADSMATHCrossRefGoogle Scholar
  6. [5]
    J. Balog, L. Dąbrowski and L. Fehér, Phys. Lett. 244B (1990) 227.ADSGoogle Scholar
  7. [6]
    G. Felder, K. Gawçdski and A. Kupiainen, Nucl. Phys. B299 (1988) 355 Commun. Math. Phys. 117 (1988) 127.ADSCrossRefGoogle Scholar
  8. [7]
    K. Gawçdski, Commun. Math. Phys. 139 (1991) 201.ADSCrossRefGoogle Scholar
  9. [8]
    G. Bimonte, P. Salomonson, A. Simoni and A. Stern, Int. J. Mod. Phys. A 7 (1992) 6159.MathSciNetADSMATHCrossRefGoogle Scholar
  10. [9]
    M.F. Chu, P. Goddard, I. Halliday, D. Olive and A. Schwimmer, Phys. Lett. B266 (1991) 71.MathSciNetADSGoogle Scholar
  11. [10]
    G. Papadopoulos and B. Spence, Phys. Lett. B292 (1992) 321.MathSciNetADSGoogle Scholar
  12. [11]
    G. Papadopoulos and B. Spence, Phys. Lett. B295 (1992) 44.MathSciNetADSGoogle Scholar
  13. [12]
    R. Abraham and J.E. Marsden, Foundations of Mechanics, Benjamin/Cummings Publishing Company, 1978.Google Scholar
  14. [13]
    G. Zuckerman, in Mathematical Aspects of String Theory, ed. S.-T. Yau, World Scientific, Singapore 1987.Google Scholar
  15. C.
    Crnkovic and E. Witten, in Three Hundred Years of Gravitation, eds. S.W. Hawking and W. Israel, C.U.P. Cambridge, 1987.Google Scholar
  16. [14]
    I. Bakas and D. McMullan, Phys. Lett. B189 (1987) 141.MathSciNetADSGoogle Scholar
  17. [15]
    V.N. Gribov, Nucl. Phys. B139 (1978) 1.MathSciNetADSCrossRefGoogle Scholar
  18. I. Singer, Commun. Math. Phys. 60 (1978) 7.ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • G. Papadopoulos
    • 1
  • B. Spence
    • 2
  1. 1.Department of PhysicsQueen Mary and Westfield CollegeLondonUK
  2. 2.Blackett LaboratoryImperial CollegeLondonUK

Personalised recommendations