Advertisement

Evolution and Co-Evolution in a Rugged Fitness Landscape

  • Per Bak
  • Henrik Flyvbjerg
  • Benny Lautrup
Part of the NATO ASI Series book series (NSSB, volume 312)

Abstract

We consider a variant of a simple, proto-typical model for biological evolution suggested by S. Kauffman [1, 2, 3, 4]: the co-evolution of abstract haploid organisms with a single copy of chromosomes. Evolution in this model is driven by random mutations of individual genes. Each species evolves in a fitness landscape which represents those aspects of its environment that remain unchanged on the time-scale of evolution. The fitness of any species depends on its position in its fitness landscape and on the state of other species. Species are, so to speak, part of each others effective landscapes. These may therefore change with time as species evolve.

Keywords

Configuration Space Fitness Landscape Sand Pile Model Freeze Phase Niels Bohr Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. A. Kauffman and S. Levin, J. theor. Biol. 128 (1987) 11MathSciNetCrossRefGoogle Scholar
  2. [2]
    S. A. Kauffman, Origins of Order: Self-Organization and Selection in Evolution (Oxford Univ. Press, Oxford, 1990)Google Scholar
  3. [3]
    S. A. Kauffman and S. Johnsen, J. theor. Biol. 149 (1991) 467CrossRefGoogle Scholar
  4. [4]
    S. A. Kauffman, Scientific American 264 (1991) 78CrossRefGoogle Scholar
  5. [5]
    P. Bak, C. Tang and K. Wiesenfeld, Phys. Rev. A38 (1987) 364MathSciNetADSGoogle Scholar
  6. [6]
    D. M. Raup, Science 231 (1986) 1528ADSCrossRefGoogle Scholar
  7. [7]
    E. Weinberger, J. theor. Biol. 134 (1988) 125MathSciNetCrossRefGoogle Scholar
  8. [8]
    C. A. Macken and A. S. Perelson, Proc. Natl. Acad. Sci. USA 86 (1989) 6191MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    C. A. Macken, P.S. Hagan, and A. S. Perelson, SIAM J. Appl. Math. 51 (1991) 799MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    E. D. Weinberger, Phys. Rev. A44 (1991) 6399ADSGoogle Scholar
  11. [11]
    H. Flyvbjerg and B. Lautrup, Evolution in a Rugged Fitness Landscape, NBI-CS-92-32; submitted to Phys. Rev. A.Google Scholar
  12. [12]
    P. Bak, H. Flyvbjerg and B. Lautrup, Co-evolution in a Rugged Fitness Landscape, NBI-CS-92-33; submitted to Phys. Rev. A.Google Scholar
  13. [13]
    J. Gillespie, Evolution 38, (1984) 1116CrossRefGoogle Scholar
  14. [14]
    B. Derrida, Phys. Rev. B24 (1981) 2613MathSciNetADSGoogle Scholar
  15. [15]
    E. Gardner and B. Derrida, J. Phys. A: Math. Gen. 22 (1989) 1975MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    B. Derrida and G. Weisbuch, J. Physique 47 (1987) 1297Google Scholar
  17. [17]
    B. Derrida, E. Gardner and A. Zippelius, Europhys. Lett. 4 (1987) 167ADSCrossRefGoogle Scholar
  18. [18]
    P. Bak, K. Chen, and M. Creutz, Nature 342 (1989) 780ADSCrossRefGoogle Scholar
  19. [19]
    P. Bak and H. Flyvbjerg, unpublishedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Per Bak
    • 1
  • Henrik Flyvbjerg
    • 2
  • Benny Lautrup
    • 2
  1. 1.Department of PhysicsBrookhaven National LaboratoryUptonUSA
  2. 2.CONNECTThe Niels Bohr InstituteCopenhagen ØDenmark

Personalised recommendations