Skip to main content

Model Hamiltonian, Coherent State and Anharmonic Localized Modes as Dynamical Self-Trapping in Nonlinear Systems and Biological Macromolecules

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 312))

Abstract

The soliton theory in mathematical physics has been generally established for spatially one-dimensional(1D), continuous systems except for a few exceptional cases such as the Toda lattice.1 Underlying concepts are the inverse-scattering-theory formalism,2 the Hirota bilinear form using the D-operators,3 the Sato τ-function theory4 and so on. An open question and issue are whether or not the concepts developed in mathematical physics and mathematics are equally applicable to realistic problems in physics, such as higher dimensional continuous systems, discrete lattices, solids, small molecules, macromolecules, etc. and biological systems. In field theory, finite-energy, stable localized classical solutions of nonlinear differential equations have often been identified as solitons,5, while nonlinear differential difference equations in solid state physics, biophysics and biochemistry have been reduced to differential equations by using the continuum approximation to get solitons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Toda, J. Phys. Soc. Jpn. 22:431(1967); 23:501(1967).

    Article  ADS  Google Scholar 

  2. See for example, M.J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM Studies in Applied Mathematics, Philadelphia (1981).

    Google Scholar 

  3. R. Hirota, “Direct method of finding exact solutions of nonlinear evolution equations, in Bäcklund Transformation”, A. Dold and B. Eckmann eds., Springer, Berlin, Heidelberg and New York (1974).

    Google Scholar 

  4. M. Sato, RIMS Kokyuroku, 439(1981), 31. See also, Y. Ohta, J. Satsuma, D. Takahashi and T. Tokihiro, Prog. Theor. Phys. Suppl. No. 94:210(1988).

    Article  MathSciNet  ADS  Google Scholar 

  5. See for example, R. Rajaraman, Solitons and Instantons (North Holland, 1982).

    Google Scholar 

  6. A.J. Sievers and S. Takeno, Phys. Rev. Lett. 61:970 (1988).

    Article  ADS  Google Scholar 

  7. S. Takeno and K. Hori, J. Phys. Soc. Jpn. 59:3037 (1990); K. Hori and S. Takeno, J. Phys. Soc. Jpn. 61(1992), to be published.

    Article  ADS  Google Scholar 

  8. S.R. Bickham, A.J. Sievers and S. Takeno, Phys. Rev. B45:10334(1992).

    Google Scholar 

  9. S. Takeno, J. Phys. Soc. Jpn. 61:1433(1992).

    Article  ADS  Google Scholar 

  10. S. Takeno, Prog. Theor. Phys. 69:1796(1983), 71: 395(1984); 73:853(1985); J. Phys. Soc. Jpn. 59:3127 (1990).

    ADS  Google Scholar 

  11. See for example, A.S. Davydov, Solitons in Molecular Systems, D. Reidel Pub. Com., Dordrecht, Boston and Lancaster (1985).

    Book  MATH  Google Scholar 

  12. For a review, see A.C. Scott, to be published in Phys. Reports.

    Google Scholar 

  13. For a review, see for example, A.A. Maradudin, E.W. Montroll, C.H. Weiss and I.P. Ipatova, Theory of Lattice Dynamics in the Harmonic Approximation, Solid State Phys. Suppl. 3, F. Scitz and D. Turnbull, eds., Academic Press, New York (1971).

    Google Scholar 

  14. R.J. Glauber, Phys. Rev. 131:2766(1963).

    Article  MathSciNet  ADS  Google Scholar 

  15. J.M. Radcliffe, J. Phys. A4:313(1971).

    MathSciNet  ADS  Google Scholar 

  16. R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integration, McGraw-Hill, New York (1967).

    Google Scholar 

  17. L.S. Schulman, Techniques and Applications of Path Integration, Wiley, New York, (1981).

    MATH  Google Scholar 

  18. Hubbard, Phys. Rev. Lett. 3:77(1959).

    Article  ADS  Google Scholar 

  19. R.L. Stratonovich, Sov. Phys.-Doklady 2:416(1958).

    ADS  Google Scholar 

  20. B.M. Pierce, “Quantum Chemical Calculations of Molecular Parameters Defining Davydov Soliton Dynamics in Polypeptides”in Davydov’s Soliton Revisited.-Self-Trapping of Vibrational Energy in Protein, P.L. Christiansen and A.C. Scott, eds., Plenum Press, New York, (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Takeno, S. (1993). Model Hamiltonian, Coherent State and Anharmonic Localized Modes as Dynamical Self-Trapping in Nonlinear Systems and Biological Macromolecules. In: Christiansen, P.L., Eilbeck, J.C., Parmentier, R.D. (eds) Future Directions of Nonlinear Dynamics in Physical and Biological Systems. NATO ASI Series, vol 312. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1609-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1609-9_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1611-2

  • Online ISBN: 978-1-4899-1609-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics