Deterministic Disorder in Two-Dimensional Media

  • Mikhail I. Rabinovich
  • Anatoly L. Fabrikant
Part of the NATO ASI Series book series (NSSB, volume 312)


The idea that random distributions of physically meaningful fields in space may be deterministically generated was put forth considerably after the discovery of dynamical chaos.1, 2, 3, 4 Such investigations, however, could have been expected much earlier, in the beginning of the seventies, because of a very close analogy between the time series generated by dynamical systems and one-dimensional spatial field distributions described by ordinary differential equations in which spatial coordinate plays the part of time.


Marangoni Number Transverse Defect Meaningful Field Space Series Homoclinic Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Coullet, C. Elphick and D. Repaux, Nature of spatial chaos, Phys. Rev. Lett. 58:431 (1987).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    S. Aubry, in: “Solitons and Condensed Matter Physics”, Springer, ser. Solid State Physics, vol. 8, A.R. Bishop and T. Schneider, eds., Springer, Berlin (1979).Google Scholar
  3. 3.
    S. Aubry and G. Abramovici, Chaotic trajectories in the standard map. The concept of anti-integrality, Physica D 43:199 (1990).MathSciNetADSCrossRefMATHGoogle Scholar
  4. 4.
    K.A. Gorshkov, L.A. Ostrovsky, V.V. Papko, and A.S. Pikovsky, On the existence of stationary solitons, Phys. Lett. A 74:177 (1979).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    J.M. Ziman. “Models of Disorder”, Cambridge University Press, Cambridge (1979).Google Scholar
  6. 6.
    L.A. Lugiato and R. Lefevr, Spatial dissipative structures in passive optical systems, Phys. Rev. Lett. 58:2209 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    P. Manneville. “Dissipative Structures and Weak Turbulence”, Academic Press (1990).Google Scholar
  8. 8.
    V.S. Afraimovich, A.B. Ezersky, M.I. Rabinovich, M.A. Shereshevsky, and A.L. Zheleznyak, Dynamical description of spatial disorder, Physica D (to be published in 1992).Google Scholar
  9. 9.
    I. Procaccia, P. Grassberger, and H.G.E. Hehtschel, On the characterization of chaotic motions, in: “Lect. Notes in Physics”, Springer, 179:212 (1983).ADSCrossRefGoogle Scholar
  10. 10.
    D. Ruelle, Deterministic chaos: the science and the fiction, Proc. R. Soc. Lond. A 427:1873:241 (1990).MathSciNetGoogle Scholar
  11. 11.
    A.B. Ezersky, M.I. Rabinovich, V.P. Reutov, and I.M. Starobinets, Spatio-temporal chaos in parametric excitation of capillary ripples, Sov. Phys. JETPH 64:1228 (1986).Google Scholar
  12. 12.
    E. Bodenschatz et al., Patterns and defects in liquid crystals, in:“New Trends in Nonlinear Dynamics and Pattern-Forming Phenomena (The Geometry of Nonequilibrium)”, Pierre Coullet and Patric Huerre, eds., Plenum Press, N.Y. (1988).Google Scholar
  13. 13.
    L. Korsinov, M.I. Rabinovich, and L. Sh. Tsimring, Breaking symmetry in nonequilibrium systems. Interfaction of defects, Phys. Rev. A (to be published).Google Scholar
  14. 14.
    M.I. Rabinovich, V.P. Reutov, and A.V. Rogalsky, Defects of nonlinear fields of capillary ripples, Phys. Lett. 144:259 (1990).CrossRefGoogle Scholar
  15. 15.
    B. Christiansen, P. Alstrom, M.T. Levinsen, Ordered capillary-wave states: quasicrystals, hexagons, and radial waves, Phys. Rev. Lett. 68:14:2157 (1992).ADSCrossRefGoogle Scholar
  16. 16.
    W.S. Edwards and S. Fauve, Phys. Rev. Lett., (to be published).Google Scholar
  17. 17.
    M.I. Rabinovich, A.L. Fabrikant, and L. Sh. Tsimring, Finite-dimensional spatial disorder, Sov. Phys. Uspekhi 167:4 (1992).Google Scholar
  18. 18.
    K.A. Gorshkov, L.N. Korzinov, M.I. Rabinovich, and L. Sh. Tsimring, submitted to Phys. Rev. Lett. Google Scholar
  19. 19.
    D.C. Fritts, T. Tsuda, T. Sato, S. Fukao, and S. Kato, Observational evidence of a saturated gravity wave spectrum in the proposphere and lower stratosphere, J. Atmos. Sci. 45:12:1741 (1988).ADSCrossRefGoogle Scholar
  20. 20.
    M.S. Longuett-Higgins, Capillary rollers and bores, submitted to J. Fluid. Mech. Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Mikhail I. Rabinovich
    • 1
  • Anatoly L. Fabrikant
    • 1
  1. 1.Institute of Applied PhysicsRussian Academy of ScienceNizhny NovgorodRussia

Personalised recommendations