Skip to main content

Factors That Influence Photon Transport Measurements in Dense Random Media

  • Chapter
  • 293 Accesses

Part of the book series: NATO ASI Series ((NSSB,volume 308))

Abstract

The possibility for study of localization effects in optically-disordered systems has spurred a renewed interest in the study of light scattering from dense random media, as evidenced by the numerous contributions to this volume. For several years, strong photon localization has been anticipated in composite materials possessing sufficiently high density of scatterers with sufficiently high cross sections for scattering photons.1 Unfortunately, no unambiguous observation of strong photon localization in the visible or infrared wavelength range has yet been reported. Recent work has, however, indicated strong photon localization in the microwave regime for a randomly disordered system.2 The difficulty in achieving localization of visible light arises from the lack of suitable materials possessing dielectric contrast sufficient to cause a localization transition in a completely random system. The conventional approach has been to rely on random suspensions of particles with large single-scattering Mie resonances, large cross-sections obtained for certain ratios of particle size to wavelength.3 Determination of the optimal situation for realization of strong photon localization may be the most pressing theoretical challenge of classical wave localization.4 Of particular interest is one theoretical approach that finds the presence of order underlying the disorder, such as in a disordered optical superlattice (e.g., a colloidal crystal), will be beneficial in achieving photon localization.5

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Sheng. Scattering and Localization of Classical Waves in Random Media, World Scientific, Singapore (1990).

    Google Scholar 

  2. A. Z. Genack and N. Garcia, “Observation of photon localization in a three-dimensional disordered system,” Phys. Rev. Lett. 66:2064 (1991).

    Article  ADS  Google Scholar 

  3. C. F. Bohren and D. R. Huftman. Absorption and Scattering of Light by Small Particles, Wiley, New York (1983).

    Google Scholar 

  4. E. N. Economou, “Classical localization,” Physica A 167:215 (1990).

    Article  ADS  Google Scholar 

  5. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58:2486 (1987).

    Article  ADS  Google Scholar 

  6. M. P. van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55:2692 (1985).

    Article  ADS  Google Scholar 

  7. P.-E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55:2696 (1985).

    Article  ADS  Google Scholar 

  8. Y. Kuga and A. Ishimaru, “Retroreflectance from a dense distribution of spherical particles,” J. Opt. Soc. Am. A 1:831 (1984).

    Article  ADS  Google Scholar 

  9. S. Etemad, R. Thompson, and M. J. Andrejco, “Weak localization of photons: Universal fluctuations and ensemble averaging,” Phys. Rev. Lett. 57:575 (1986).

    Article  ADS  Google Scholar 

  10. M. Kaveh, M. Rosenbluh, I. Edrei, and I. Freund, “Weak localization and light scattering from disordered solids,” Phys. Rev. Lett. 57:2049 (1986).

    Article  ADS  Google Scholar 

  11. E. Akkermans, P.-E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: Analysis of the peak line shape,” Phys. Rev. Lett. 56:1471 (1986).

    Article  ADS  Google Scholar 

  12. M. J. Stephen, “Rayleigh scattering and weak localization,” Phys. Rev. Lett. 56:1809 (1986).

    Article  ADS  Google Scholar 

  13. M. J. Stephen and G. Cwilich, “Rayleigh scattering and weak localization: Effects of polarization,” Phys. Rev. B 34:7564 (1986).

    Article  ADS  Google Scholar 

  14. G. Cwilich and M. J. Stephen, “Rayleigh scattering and weak localization: Geometric effects and fluctuations,” Phys. Rev. B 35:6517 (1987).

    Article  ADS  MATH  Google Scholar 

  15. F. C. MacKintosh and S. John, “Coherent backscattering of light in the presence of time-reverse-noninvariant and parity-nonconserving media,” Phys. Rev. B 37:1884 (1988).

    Article  ADS  Google Scholar 

  16. M. P. van Albada, M. B. van der Mark, and A. Lagendijk, “Observation of weak localization of light in a finite slab: Anisotropy effects and light-path classification,” Phys. Rev. Lett. 58:361 (1987).

    Article  ADS  Google Scholar 

  17. S. Etemad, R. Thompson, M. J. Andrejco, S. John, and F. C. MacKintosh, “Weak localization of photons: Termination of coherent random walks by absorption and confined geometry,” Phys. Rev. Lett. 59:1420 (1987).

    Article  ADS  Google Scholar 

  18. M. B. van der Mark, M. P. van Albada, and A. Lagendijk, “Light scattering in strongly scattering media: Multiple scattering and weak localization,” Phys. Rev. B 37:3575 (1988).

    Article  ADS  Google Scholar 

  19. P. E. Wolf, G. Maret, E. Akkermans, and R. Maynard, “Optical coherent backscattering by random media: An experimental study,” J. Phys. France 49:63 (1988).

    Article  Google Scholar 

  20. E. Akkermans, P.-E. Wolf, R. Maynard, and G. Maret, “Theoretical study of the coherent backscattering of light by disordered media,” J. Phys. France 49:77 (1988).

    Article  ADS  Google Scholar 

  21. D. Shmeltzer and M. Kaveh, “Backscattering of electromagnetic waves by a random dielectric medium,” Phys. Rev. A 35:2251 (1987).

    Article  Google Scholar 

  22. K. M. Yoo, K. Arya, G. C. Tang, J. L. Birman, and R. R. Alfano, “Coherent backscattering of a picosecond pulse from a disordered medium: Analysis of the pulse shape in the time domain,” Phys. Rev. A 39:3728 (1989).

    Article  ADS  Google Scholar 

  23. R. Vreeker, M. P. van Albada, R. Sprik, and A. Lagendijk, “Femtosecond time-resolved measurements of weak localization of light,” Phys. Lett. A 132:51 (1988).

    Article  ADS  Google Scholar 

  24. G. H. Watson, P. A. Fleury, and S. L. McCall, “Search for photon localization in the time domain,” Phys. Rev. Lett. 58:945 (1987).

    Article  ADS  Google Scholar 

  25. M. P. van Albada, B. A. van Tiggelen, A. Lagendijk, and A. Tip, “Speed of propagation of classical waves in strongly scattering media,” Phys. Rev. Lett. 66:3132 (1991).

    Article  ADS  Google Scholar 

  26. B. A. van Tiggelen, A. Lagendijk, M. P. van Albada, and A. Tip, “Speed of light in random media,” Phys. Rev. B 45:12233 (1992).

    Article  ADS  Google Scholar 

  27. P. M. Saulnier, M. P. Zinkin, and G. H. Watson, “Scattering correlation effects on photon transport in dense random media,” Phys. Rev. B 42:2621 (1990).

    Article  ADS  Google Scholar 

  28. J. M. Drake and A. Z. Genack, “Observation of nonclassical optical diffusion,” Phy. Rev. Lett. 63:259 (1989).

    Article  ADS  Google Scholar 

  29. K. M. Yoo, F. Liu, and R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media,” Phys. Rev. Lett. 64:2647 (1990).

    Article  ADS  Google Scholar 

  30. A. Z. Genack, “Optical transmission in disordered media,” Phys. Rev. Lett. 58:2043 (1987).

    Article  ADS  Google Scholar 

  31. A. Z. Genack and J. M. Drake, “Relationship between optical intensity, fluctuations and pulse propagation in random media,” Europhysics Lett. 11:331 (1990).

    Article  ADS  Google Scholar 

  32. G. H. Watson, S. L. McCall, P. A. Fleury, and K. B. Lyons, “Speckle autocorrelation spectroscopy and pulse transmission as probes of photon transport in strongly scattering random media,” Phys. Rev. 5 41:10947 (1990).

    Article  Google Scholar 

  33. M. P. van Albada, J. F. de Boer, and A. Lagendijk, “Observation of long-range intensity correlation in the transport of coherent light through a random medium,” Phys. Rev. Lett. 64:2787 (1990).

    Article  ADS  Google Scholar 

  34. A. Z. Genack, N. Garcia, and W. Polkosnik, “Long-range intensity correlations in random media,” Phys. Rev. Lett. 65:2129 (1990).

    Article  ADS  Google Scholar 

  35. N. Garcia and A. Z. Genack, “Anomalous photon diffusion at the threshold of the Anderson localization transition,” Phys. Rev. Lett. 66:1850 (1991).

    Article  ADS  Google Scholar 

  36. K. Clays and A. Persoons, “Photon random walk in the frequency domain,” Opt. Comm. 92:6 (1992).

    Article  ADS  Google Scholar 

  37. A. Ishimaru and Y. Kuga, “Attenuation constant of a coherent field in a dense distribution of particles,” J. Opt. Soc. Am. 72:1317 (1982).

    Article  ADS  Google Scholar 

  38. M. S. Wertheim, “Exact solution of the Perçus-Yevick integral equation for hard spheres,” Phys. Rev. Lett. 10:321 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. L. Tsang, J. A. Kong, and T. Habashy, “Multiple scattering of acoustic waves by random distribution of discrete spherical scatterers with the quasicrystalline and Percus-Yevick approximation,” J. Acoust. Soc. Am. 71:552 (1982).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. I. Freund, M. Rosenbluh, and R. Berkovits, “Geometric scaling of the optical memory effect in coherent-wave propagation through random media,” Phys. Rev. B 39:12403 (1989).

    Article  ADS  Google Scholar 

  41. A. Lagendijk, R. Vreeker, and P. De Vries, “Influence of internal reflections on diffusive transport in strongly scattering media,” Phys. Lett. A 136:81 (1989).

    Article  ADS  Google Scholar 

  42. I. Freund and R. Berkovits, “Surface reflections and optical transport through random media: Coherent backscattering, optical memory effect, frequency, and dynamical correlations,” Phys. Rev. 541:496 (1990).

    Article  Google Scholar 

  43. J. X. Zhu, D. J. Pine, and D. A. Weitz, “Internal reflection of diffusive light in random media,” Phys. Rev. A 44:3948 (1991).

    Article  ADS  Google Scholar 

  44. M. Born and E. Wolf, Principles of Optics, Pergammon Press, Oxford (1980).

    Google Scholar 

  45. I. Freund and D. Eliyahu, “Surface correlations in multiple-scattering media,” Phys. Rev. A 45:6133 (1992).

    Article  ADS  Google Scholar 

  46. I. Freund, “Surface reflections and boundary conditions for diffusive photon transport,” Phys. Rev. A 45:8854 (1992).

    Article  ADS  Google Scholar 

  47. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66:1145 (1976).

    Article  ADS  Google Scholar 

  48. N. Garcia and A. Z. Genack, “Crossover to strong intensity correlation for microwave radiation in random media,” Phys. Rev. Lett. 63:1678 (1989).

    Article  ADS  Google Scholar 

  49. N. Shnerb and M. Kaveh, “Non-Rayleigh statistics of waves in random systems,” Phys. Rev. B 43:1279 (1991).

    Article  ADS  Google Scholar 

  50. I. Freund, M. Kaveh, R. Berkovits, and M. Rosenbluh, “Universal polarization correlations and microstatistics of optical waves in random media,” Phys. Rev. B 42:2613 (1990).

    Article  ADS  Google Scholar 

  51. S. M. Cohen, D. Eliyahu, I. Freund and M. Kaveh, “Vector statistics of multiply scattered waves in random systems,” Phys. Rev. A 43:5748 (1991).

    Article  ADS  Google Scholar 

  52. R. C. Furneaux, W. R. Rigby and A. P. Davidson, “The formation of controlled-porosity membranes from anodically oxidized aluminum,” Nature 337:147 (1989).

    Article  ADS  Google Scholar 

  53. I. I Tarhan and G. H. Watson, “Polarization microstatistics of laser speckle,” Phys. Rev. A 45:6013 (1992).

    Article  ADS  Google Scholar 

  54. J. W. Goodman, Statistical Optics, Wiley-Interscience, New York (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Watson, G.H., Saulnier, P.M., Tarhan, İ.İ., Zinkin, M.P. (1993). Factors That Influence Photon Transport Measurements in Dense Random Media. In: Soukoulis, C.M. (eds) Photonic Band Gaps and Localization. NATO ASI Series, vol 308. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1606-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1606-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1608-2

  • Online ISBN: 978-1-4899-1606-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics