Dynamic Correlations of Multiply Scattered Light from Strongly Interacting Suspensions

  • J. X. Zhu
  • D. A. Weitz
  • R. Klein
Part of the NATO ASI Series book series (NSSB, volume 308)


The scattering of a coherent light source, such as a laser, from any random medium invariably results in a far field scattering pattern consisting of light and dark regions, called a speckle pattern. If the scattering medium changes in time, as for example will happen if the scattering particles move, then the speckle pattern also changes in time, reflecting this motion. The analysis of the intensity fluctuations of a single speckle spot can provide information about the dynamics of the scattering medium, and this form of light scattering is called dynamic light scattering (DLS), or quasielastic light scattering. The traditional DLS experiment entails the measurement of the temporal autocorrelation function of the intensity fluctuations of a speckle spot, and for singly scattered light, the time constant of the decay of this correlation function can be related to the dynamics of the scattering system through knowledge of the scattering wave vector, q. This is a well developed form of light scattering spectroscopy, and traditional DLS has found many applications in the study of the dynamics of a wide variety of systems.


Correlation Function Apparent Diffusion Coefficient Dynamic Light Scattering Hydrodynamic Interaction Random Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.J. Berne and R. Pecora. “Dynamic Light Scattering: with Applications to Chemistry, Biology and Physics,” Wiley, New York (1976).Google Scholar
  2. 2.
    P.E. Wolf, G. Maret, E. Akkermans and R. Maynard, J. Phys. France 49:63 (1988).CrossRefGoogle Scholar
  3. 3.
    D.J. Pine, D.A. Weitz, P.M. Chaikin and E. Herbolzheimer, Diffusing Wave Spectroscopy, Phys. Rev. Lett. 60:1134 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    D.J. Pine, D.A. Weitz, J.X. Jhu and E. Herbolzheimer, Diffusing-Wave Spectroscopy: Dynamic Light Scattering in the Multiple Scattering Limit, J. Phys. France 51:2101 (1990).CrossRefGoogle Scholar
  5. 5.
    D.J. Pine, D.A. Weitz, G. Maret, P.E. Wolf, P.M. Chaikin and E. Herbolzheimer, Dynamical Correlations of Multiply Scattered Light, in: “Scattering and Localization of Classical Waves in Random Media,” P. Sheng, eds., World Scientific, Singapore (1990).Google Scholar
  6. 6.
    A. Ishimaru. “Wave Propagation and Scattering in Random Media,” Academic, New York (1978).Google Scholar
  7. 7.
    P.E. Wolf and G. Maret, Phys. Rev. Lett. 55:2696 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    M.P. van Albada and A. Lagendijk, Observation of Weak Localization of Light in a Random Medium, Phys. Rev. Lett. 55:2692 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    M.P. van Albada, J.F. de Boer and A. Lagendijk, Observation of Long-Range Intensity Correlation in the Transport of Coherent Light through a Random Medium, Phys. Rev. Lett. 64:2787 (1990).ADSCrossRefGoogle Scholar
  10. 10.
    S. Feng, C. Kane, P.A. Lee and A.D. Stone, Phys. Rev. Lett. 61:834 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    D.A. Weitz and D.J. Pine, Diffusing-Wave Spectroscopy, in: “Dynamic Light Scattering,” W. Brown, eds., Oxford University Press, Oxford (1992).Google Scholar
  12. 12.
    D.A. Weitz, J.X. Zhu, D.J. Durian and D.J. Pine, Principles and Applications of Diffusing-Wave Spectroscopy, in: “Structure and Dynamics of Strongly Interacting Colloids and Supramolecular Aggregates in Solution,” S.H. Chen, J.S. Huang and P. Tartaglia, eds., Kluwer, Dordrecht (1992).Google Scholar
  13. 13.
    S. Fraden and G. Maret, Phys. Rev. Lett. 65:512 (1990).ADSCrossRefGoogle Scholar
  14. 14.
    X. Qiu, X.L. Wu, J.Z. Xue, D.J. Pine, D.A. Weitz and P.M. Chaikin, Hydrodynamic Interactions in Concentrated Suspensions, Phys. Rev. Lett. 65:516 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    F.C. MacKintosh and S. John, Phys. Rev. B40:2383 (1989).ADSCrossRefGoogle Scholar
  16. 16.
    D.A. Weitz, DJ. Pine, P.N. Pusey and R.J.A. Tough, Nondiffusive Brownian Motion Studied by Diffusing-Wave Spectroscopy, Phys. Rev. Lett. 63:1747 (1989).ADSCrossRefGoogle Scholar
  17. 17.
    J.X. Zhu, D.J. Durian, J. Muller, D.A. Weitz and D.J. Pine, Scaling of Transient Hydrodynamic Interactions in Concentrated Suspensions, Phys. Rev. Lett. 68:2559 (1992).ADSCrossRefGoogle Scholar
  18. 18.
    P.N. Pusey and R.J.A. Tough, Particle Interactions, in: “Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy,” R. Pecora, eds., Plenum, New York (1981).Google Scholar
  19. 19.
    P.N. Pusey, Colloidal Suspensions, in: “Liquids, Freezing and Glass Transition,” J.P. Hansen, D. Levesque and J. Zinn-Justin, eds., Elsevier, Amsterdam (1991).Google Scholar
  20. 20.
    W. Hess and R. Klein, Adv. Phys. 32:173 (1983).MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    R. Klein, to be published.Google Scholar
  22. 22.
    J. Bonet Avalos, J.M. Rubi and D. Bedeaux, Dynamics of Polymers in Solution: The Role of Time-Dependent Hydrodynamic Interactions, Macromolecules 24:5997 (1991).ADSCrossRefGoogle Scholar
  23. 23.
    P. Mazur and D. Bedeaux, Physica A76:235 (1974).MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    P.N. Pusey and R.J.A. Tough, Faraday Disc. 76:123 (1983).CrossRefGoogle Scholar
  25. 25.
    W. van Saarloos and P. Mazur, Physica 120A:77 (1983).MathSciNetCrossRefGoogle Scholar
  26. 26.
    B.J. Alder and T.E. Wainwright, Phys. Rev. Lett. 18:988 (1967).ADSCrossRefGoogle Scholar
  27. 27.
    B.J. Alder and T.E. Wainwright, Phys. Rev. A1:18 (1970).ADSCrossRefGoogle Scholar
  28. 28.
    E.J. Hinch, J. Fluid Mech. 72:499 (1975).MathSciNetADSCrossRefMATHGoogle Scholar
  29. 29.
    G. Maret and P. Wolf, Multiple Light Scattering from Disordered Media. The Effect of Brownian Motion of Scatterers, Z. Phys. B65:409 (1987).CrossRefGoogle Scholar
  30. 30.
    A. Lagendijk, R. Vreeker and P. DeVries, Influence of Internal Reflection on Diffusive Transport in Strongly Scattering Media, Phys. Lette. A 136:81 (1989).ADSCrossRefGoogle Scholar
  31. 31.
    J.X. Zhu, D.J. Pine and D.A. Weitz, Internal Reflection of Diffusive Light in Random Media, Phys. Rev. A44:3948 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • J. X. Zhu
    • 1
  • D. A. Weitz
    • 2
  • R. Klein
    • 3
  1. 1.Dept. of Chemical EngineeringPrinceton UniversityPrincetonUSA
  2. 2.Exxon Research and Engineering Co.AnnandaleUSA
  3. 3.Fakultät für PhysikUniversität KonstanzKonstanzGermany

Personalised recommendations