Growth of Mountain Birch (Betula Pubescens Ehrh.) in Response to Changing Temperature

  • Oddvar Skre
Part of the NATO ASI Series book series (NSSA, volume 244)


In alpine and arctic areas, where climate regularly changes between cold winters and warm growing seasons, plants have evolved different survival strategies. Selection pressures in alpine and arctic climates are determined by abiotic factors rather than competition (Kallio, 1984). Plants that tolerate freezing and drying stress have an advantage over plants that have not evolved resistance to extreme cold and drought.


Biomass Hydrolysis Phosphorus Dioxide Maize 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aalvik, G., 1939, Über Assimilation and Atmung einiger Holzgewächse im westnorwegischen Winter (Assimilation and respiration in selected tree species in western Norway in winter), Meddelelser fra Vestlandets forstlige Forspksstasion, 6 (4): 1–266.Google Scholar
  2. Agren, G. I., 1985, Limits to plant production, Journals of Theoretical Biology, 113: 89–92.CrossRefGoogle Scholar
  3. Blackman, V. H., 1919, The compound interest law and plant growth, Annals of Botany, 33: 353–360.Google Scholar
  4. Chapin, F. S. III, 1979, Nutrient uptake and utilization by tundra plants. In: Underwood, L. S., Tieszen, L. L., Callahan, A. B., and Folk, G. E., eds., Comparative mechanisms of cold adaptation, Academic Press, New York, London, Toronto, 215–234.CrossRefGoogle Scholar
  5. Chapin, F. S. III, and Tryon, P. R., 1982, Phosphate absorption and root respiration of different plant growth forms from northern Alaska, Holarctic Ecology, 5: 164–171.Google Scholar
  6. Crawford, R. M. M., 1989, Studies in plant survival. In: Andersson, D. J., Greig-Smith, P., and Pitelka, F. A., eds., Studies in Ecology, Vol. 11, Blackwell Scientific Publications, Oxford, 296 p.Google Scholar
  7. Dahl, E., and Mork, E., 1959, Om sambandet mellom temperatur, änding og vekst hos gran (Picea abies (L.) Karst.) (On the relationship between temperature, respiration, and growth in Norway spruce), Meddelelser fra det norskeskogforspksvesen, 16:81–93. English summary.Google Scholar
  8. Elkington, T. T., 1968, Introgressive hybridization between Betula nana L. and B. pubescens Ehrh. in northwest Iceland, New Phytologist, 67:109–118.Google Scholar
  9. Hagem, 0., 1917, Furuens og granens frpsetning i Norge (Seed production in Scots pine and Norway spruce in Norway), Meddelelser fra Vestlandets forstlige forspksstasjon, 1(2):1–188.Google Scholar
  10. Hagem, 0., 1947, The dry matter increase in coniferous seedlings in winter, Meddelelser fra Vestlandets forstlige forsoksstasion, 8 (1): 1–317.Google Scholar
  11. Heikinheimo, O., 1921, Die Waldgrenzwälder Finlands und ihre künftige Nutzung (The timberline forests of Finland and their future use), Metsätietaro Tutkimuslaitos Julkessa, 4 (3): 1–71.Google Scholar
  12. Heikinheimo, O., 1932, Über die Besamungsfähigkeit der waldbäume (On the fertility of forest trees), Metsätietaro Tutkimuslaitos Julkessa, 17 (3): 1–61.Google Scholar
  13. Hustich, I., 1944, Nägra synspunkter pä skogsgränserna i nordligste Skandinavien (Some views regarding timberlines in northern Scandinavia), Svenska Skogsvärdsföreningens Tidsskrift, 42: 132–141.Google Scholar
  14. Junttila, O., and Heide, O. M., 1981, Shoot and needle growth in Pinus silvestris as related to temperature in Northern Fennoscandia, Forest Science, 27: 423–430.Google Scholar
  15. Kallio, P., 1984, The essence of biology in the North, Nordia, 18 (2): 53–65.Google Scholar
  16. Kallio, P., Niemi, S., Sulkioja, M., and Valanne, T., 1983, The Fennoscandian birch and its evolution in the marginal forest zone. In: Morisset, P., and Payettes, S., eds., Tree-line ecology, Proceedings of the Northern Quèbec Tree-Line Conference in Poste-dela-Baleine, Northern Quèbec, 1981 June 22—July 1, Centre d’etudes nordique, Laval University, Québec City, Québec, 101–110.Google Scholar
  17. Kozlowski, T. T., and Gentile, A. C., 1958, Respiration of white pine buds in relation to oxygen availability and moisture content, Forest Science, 4: 147–152.Google Scholar
  18. Kujala, V., 1927, Untersuchungen über den Bau und die Keimfähigkeit von Kiefern-und Fichtensamen (Investigations on the morphology and germination capacity in seeds of Scots pine and Norway spruce), Metsätietaro Tutkimuslaitos Julkessa, 12 (6): 1–106.Google Scholar
  19. Lambers, H., 1980, The physiological significance of cyanide-resistant respiration in higher plants, Plant, Cell and Environment, 3: 293–302.Google Scholar
  20. Langlet, 0., 1960, Mellaneuropeiska gransorter i svensk skogbruk (Central European provenances of Norway spruce in Swedish forestry), Kungliga Skogs-och Lantbruksakademiens Tidskrift, 99:259–329. English summary.Google Scholar
  21. Mooney, H. A., and Billings, W. D., 1961, Comparative physiological ecology of arctic and alpine populations of Oxyria digyna, Ecological Monographs, 31: 1–29.CrossRefGoogle Scholar
  22. Mork, E., 1941, Om sambandet mellom temperatur og vekst, Undersokelser av de daglige variasjoner i granens h0ydetilvekst (On the relationship between temperature and growth; investigations on the daily variations in shoot elongation in Norway spruce), Meddelelesr fra det norske skogforsoksvesen, 8: 1–89.Google Scholar
  23. Parker, J., 1963, Cold résistance in woody plants, Botanical Review, 29: 123–205.CrossRefGoogle Scholar
  24. Penning de Vries, F. W. T., 1972, Respiration and growth. In: Rees, A. R., Cockshull, K. E., Hand, D. W., and Hurd, J. R., eds., Crop processes in controlled environments, Academic Press, New York, London, 327–347.Google Scholar
  25. Printz, H., 1933, Granenes og furuens fysiologi og geografiske utbredelse (On the physiology and geographical distribution of spruce and Scots pine), Nyt Magasin for Naturvidenskapene, 73: 169–219.Google Scholar
  26. Prudhomme, T. I., 1983, Carbon allocation to antiherbivore compounds in a deciduous and an evergreen subarctic shrub species, Oikos, 40: 344–356.Google Scholar
  27. Romell, L. G., 1925, Växttidsunders0kningar pä tall och gran (Phenological investigations in Scots pine and Norway spruce), Meddelelser fra Staten Skogförsöksanstalt, 22: 45–124.Google Scholar
  28. Rutter, A. J., 1957, Studies in the growth of young plant of Pinus sylvestris L., I. The annual cycle of assimilation and growth, Annals of Botany, 21: 399–425.Google Scholar
  29. Skre, O., 1972, High temperature demands for growth and development in Norway spruce (Picea abies (L.) Karst.) in Scandinavia, Meldinger fra Norges Landbrukshogskole, 51 (7): 129.Google Scholar
  30. She, O., 1989, Adaptation to cold conditions and restriction on growth in mountain plants: A literature survey, Blyttia, 47: 135–142.Google Scholar
  31. She, O., 1990, Consequences of possible climatic temperature changes for plant production and growth in alpine and subalpine areas in Fennoscandia. In: Holten, J., ed., Effects of climate changes on terrestrial ecosystems. Report from a seminar in Trondheim (January 16, 1990), NINA, 18–37.Google Scholar
  32. She, O., 1991a, Physiology of plant survival under cold conditions, with particular reference to dark respiration as a factor limiting growth at timberline; A literature review, Meddelelser fra Skogforsk, 44 (1): 1–34.Google Scholar
  33. She, 0., 1991b, Temperature responses on the growth and development of mountain birch (Betula pubescens Ehrh.), elm (Ulmus glabra Huds.), and maple (Acer platanoides L.) seedlings in continuous light, Meddelelser fra Skogforsk, 44 (5): 1–44.Google Scholar
  34. She, O., 1991c, Growth experiments with ecotypes of mountain birch (Betula pubescens Ehrh.) and lowland birch (Betula pendula Roth) at varying temperatures, light and daylengths, Meddelelser fra Skogforsk, 44 (6): 1–41.Google Scholar
  35. She, O., 1991d, Chemical composition of birch seedlings grown at varying temperature, light and photoperiod, Meddelelser fra Skogforsk, 44 (8): 1–28.Google Scholar
  36. Skre, O., 1992, [In press], Nutrient limitation in birch ecotypes and the possible function of alternative respiration as a growth-regulating mechanism.Google Scholar
  37. She, O., and Oechel, W. C., 1979, Moss production in a black spruce (Picea mariana) forest with permafrost near Fairbanks, Alaska, as compared with two permafrost-free stands, Holarctic Ecology, 2: 249–254.Google Scholar
  38. Sveinbj0rnsson, B., 1983, Bioclimate and its effect on the carbon dioxide flux of mountain birch (Betula pubescens Ehrh.) at its altitudinal tree-line in the Torneträsk area, northern Sweden. In: Morisset, P., and Payette, S., eds., Tree-line ecology, Proceedings of the Northern Quèbec Tree-Line Conference in oste-de-la-Balein, Northern Quèbec, June 1981, Centre d’etudes nordiques, Laval University, Quèbec City, Quèbec, 111–122.Google Scholar
  39. Thornley, J. M. H., 1972, A balanced quantitative model for root:shoot ratios in vegetative plants, Annales of Botany, 26: 431–441.Google Scholar
  40. Tranquillini, W., 1979, Physiological ecology of the alpine timberline, Tree existence at high latitude with special reference to the European Alps, Ecological Studies 31, Springer Verlag, Berlin, Heidelberg, New-York, 137 p.Google Scholar
  41. Vaarama, A., and Valanne, T., 1973, On the taxonomy, biology and origin of Betula tortuosa Ledeb., Reports from Kevo Subarctic Research Station (Finland), 10: 70–84.Google Scholar
  42. Volger, H. B., and Heber, U., 1975, Cryoprotective leaf proteins, Biochemica et Biophysica Acta, 412: 335–349.CrossRefGoogle Scholar
  43. Vowichel, T., Oechel, W. C., and Boll, W. G., 1975, The effect of climate on the photosynthesis of Picea mariana at the subarctic line, 1. Field measurements, Canadian Journal of Botany, 53 (7): 604–620.CrossRefGoogle Scholar
  44. Warren-Wilson, J., 1972, Ecological data on dry matter production by plants and plant communities. In: Bradley, E. F., and Denmead, O. T., eds., The Collection and Processing of Field Data, CSIRO Symposium, Interscience Publishers, New York, London, Sydney, 77–123.Google Scholar
  45. West, C., Briggs, G. E., and Kidd, F., 1920, Quantitative analysis of plant growth, New Phytologist, 19: 200–207.CrossRefGoogle Scholar
  46. Zelitch, J., 1966, Increased rate of net photosynthetic carbon dioxide uptake caused by the inhibition of glycolate oxidase, Plant Physiology 41: 1623–1631.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Oddvar Skre
    • 1
  1. 1.Norwegian Forest Research InstituteFanaNorway

Personalised recommendations