Skip to main content

Slow Potential Shifts as Indicants of Glial Activation and Possible Neuromodulation

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 254))

Abstract

Slow potential shifts (SPSs) of 0.5 to 10 seconds duration have recently been shown to be largely glial in origin. They are associated with arousal and occur in all vertebrate species studied suggesting they reflect a fundamental glial function of regulation and perhaps modulation of the neuronal ecosystem. The most likely candidates for neuromodulation by glia are extracellular K+, Ca++ and glutamate. In both teleost fish and gerbils links have been found between behavioural arousal, seizures, glutamate or its metabolism and SPSs. Studies of neuronal-glial interactions and the expression of glial function in the SPS are likely to have profound importance for progress in behavioural and clinical neuroscience.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoki, G., Milner, T. A., Sheu, K. R., Blass, J. P. and Pickel, V. M., 1987, Regional distribution of astrocytes with intense immunoreactivity for glutamate dehydrogenase in rat brain. Implications for neuron-glia interactions in glutamate transmission, J. Neurosci., 7: 2214–2231.

    PubMed  CAS  Google Scholar 

  • Ariyasu, R. G., Nichol, J. A. and Ellisman, M. H., 1985, Localisation of sodium/potassium adenosine triphosphatase in multiple cell types of the murine nervous system with antibodies raised against the enzyme from kidney, J. Neurosci, 510:2581–2596.

    Google Scholar 

  • Bauer, H. and Nirnberger, G., 1981, Concept identification as a function of preceding negative or positive spontaneous shifts in slow brain potentials, Psychophysiology, 18: 466–469.

    Article  PubMed  CAS  Google Scholar 

  • Bevan, S. and Raff, M., 1985, Voltage dependent potassium currents in cultured astrocytes, Nature, 315:229–232.

    Article  PubMed  CAS  Google Scholar 

  • Born, J., Whipple, S. C. and Stam, J., 1982, Spontaneous cortical slow potential shifts and choice reaction time performance, Electroenceph. clin. Neurophysiol., 54:668–676.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, C. L. and Kimelberg, H. K., 1984, Excitatory amino acids directly polarise rat brain astrocytes in primary culture, Nature, 311:656–659.

    Article  PubMed  CAS  Google Scholar 

  • Caspers, H. and Speckmann, E. J., DC potential shifts in paroxysmal states, in: “Basic Mechanisms of the Epilepsies”, H. H. Jasper, A. A. Ward, Jr. and A. Pope, eds., Little Brown, Boston, pp 375–388.

    Google Scholar 

  • Caton, R., 1875, The electric currents of the brain, Br. Med. J., 2:278.

    Google Scholar 

  • Coles, J. A. and Orkand, R. K., 1983, Modification of potassium movement through the retina of the drone, (Apis mellifera) by glial uptake, J. Physiol., 340:157–174.

    PubMed  CAS  Google Scholar 

  • Currie, D. H. and Kelly, J. S., 1981, Glial versus neuronal uptake of glutamate, J. exp. Biol., 95: 181–193.

    PubMed  CAS  Google Scholar 

  • Drejer, J., Benveniste, H., Diemer, N. H. and Shousboe, A., 1985, Cellular origin of ischemia-induced glutamate release from brain tissue in vivo and in vitro, J. Neurochem., 45(1): 145–151.

    Article  PubMed  CAS  Google Scholar 

  • Gardner-Medwin, A. R., 1983, Analysis of potassium dynamics in mammalian brain tissue, J. Physiol., 335:393–426.

    PubMed  CAS  Google Scholar 

  • Gumnit, R. J., 1961, The distribution of direct current responses evoked by sounds in the auditory cortex of the cat, Electroenceph. clin. Neurophysiol., 13:889–895.

    Article  Google Scholar 

  • Gutnick, M. J., Connors, B. W. and Ransom, B. R., 1981, Dye coupling between glial cells in the guinea pig neocrotical slice, Brain Res., 213:486–492.

    Article  PubMed  CAS  Google Scholar 

  • Hertz, L., 1979, Functional interactions between neurons and astrocytes. I. Turnover and metabolism of putative amino acids transmitters, Progr. Neurobiol, 13:277–323.

    Article  CAS  Google Scholar 

  • Jasper, H., Khan, R. T. and Elliot, K. A. C., 1965, Amino acids released from the cerebral cortex in relation to its state of activation, Science, 147:1448–1449.

    Article  PubMed  CAS  Google Scholar 

  • King, J. S., 1966, A comparative investigation of neuroglia in representative vertebrates, J. Morphol., 119: 435–466.

    Article  PubMed  CAS  Google Scholar 

  • Kuffler, S. W., Nicholls, J. G. and Orkand, R. K., 1966, Physiological properties of glial cells in the central nervous system of amphibia, J. Neurophysiol., 29:768–787.

    PubMed  CAS  Google Scholar 

  • Laming, P. R., 1989a, Central representation of arousal, in: “Visuomotor Coordination: Amphibians, Comparisons, Models and Robots”, J. P. Ewert and M. A. Arib, eds., Plenum Press, New York. pp 693–727.

    Chapter  Google Scholar 

  • Laming, P. R., 1989b, Do glia contribute to behaviour? A neuromodulatory review, Comp. Biochem. Physiol., 94A(4): 555–568.

    Article  CAS  Google Scholar 

  • Laming, P. R. and Ewert, J. P., 1984, Visual unit, EEG and sustained potential shift responses to biologically significant stimuli in the brain of toads (Bufo bufo), J. comp. Physiol., 154: 89–101.

    Article  Google Scholar 

  • Laming, P. R. and Lenke, R., 1991, Glutamate, not GABA causes prolonged elevation of cardiac arousal responses in goldfish. Comp. Biochem. Physiol., 99C, 1/2:101–103.

    CAS  Google Scholar 

  • Laming, P. R. and Savage, G. E., 1980, Physiological changes observed in the goldfish (Carassius auratus) during behavioural arousal and fright, Behav. Neural. Biol, 29:255–275.

    Article  PubMed  CAS  Google Scholar 

  • Laming, P. R., Borchers, H. W. and Ewert, J. P., 1984, Visual unit, EEG and sustained potential shift responses in the brains of toads (Bufo bufo) during alert and defensive behavior, Physiol. Behav., 32: 463–468.

    Article  PubMed  CAS  Google Scholar 

  • Laming, P. R., Bullock, T. H. and McClune, M., 1991a, Sustained potential shifts and changes in acoustic evoked potentials after presentation of a non-acoustic stimulus to carp (Cyprinus carpio), Comp. Biochem. Physiol., 100A,1:95–104.

    Article  Google Scholar 

  • Laming, P. R., Ewert, J. P. and Borchers, H. W., 1984, Effects of telencephalic ablation on visual unit sustained potential shift and EEGs recorded from the toad tectum in response to a visual stimulus, Behav. Neuroscl., 98(1): 118–124.

    Article  CAS  Google Scholar 

  • Laming, P. R. and Ewert, J. P., 1983, The effects of pretectal lesions on neuronal, sustained potential shift and electroencephalic responses of the toad tectum to presentation of a visual stimulus, Comp. Biochem. Physiol., 76A(2): 247–252.

    Article  Google Scholar 

  • Laming, P. R., Elwood, R. W. and Best, P. M., 1989a, Epileptic tendencies in relation to behaviour to a novel environment in the Mongolian gerbil, Behav. neur. Biol., 51:92–101.

    Article  CAS  Google Scholar 

  • Laming, P. R., Cosby, S. L. and O’Neill, J. K., 1989b, Seizures in the Mongolian gerbil are related to a deficiency in cerebral glutamine synthetase, J. comp. Biochem. Physiol., 94C(2): 399–404.

    CAS  Google Scholar 

  • Laming, P. R., Rooney, D. J. and Ferguson, J., 1987, Epileptogenesis is associated with heightened arousal responses in fish, Physiol. Behav., 40: 617–624.

    Article  PubMed  CAS  Google Scholar 

  • Laming, P. R., Rooney, D. J. and Szabo, T., 1991b, Arousal and epileptogenesis in the electric fish (Gnathonemus petersii), Comp. Biochem. Physiol., 99A, 3:405–409.

    Article  Google Scholar 

  • Lickey, M. E. and Fox, S. S., 1966, Localisation and habituation of sensory evoked DC responses in cat cortex, Exp. Neurol., 15:437–454.

    Article  PubMed  CAS  Google Scholar 

  • Machek, J., Ujec, E. and Pavlik, V., 1982, Slow potential changes in experimental neocortical propagated foci, Neurosci. Lett., 25:327–332.

    Article  Google Scholar 

  • MacVicar, B. A., 1985, Voltage-dependent calcium channels in glial cells, Science, 226:1345–1347.

    Article  Google Scholar 

  • McCallum, W. C., Papakostopoulos, D., Gombi, R., Winter, A. L., Cooper, R. and Griffith, H. B., 1973, Event related slow potential changes in human brain stem, Nature, 242: 465–467.

    Article  PubMed  CAS  Google Scholar 

  • Majowski, J. and Donadio, M., 1984, Electro-clinical studies of epileptic seizures in Mongolian gerbils, Electroenceph. clin. Neurophysiol., 57:369–377.

    Article  Google Scholar 

  • Mayer, M. L. and Westbrook, G. L., 1987, The physiology of excitatory amino acids in the vertebrate central nervous system, in: “Progress in Neurobiology”, G. A. Kerkut and J. W. Phillips, eds., Pergamon, Oxford, pp 197–276.

    Google Scholar 

  • Mugnaini, E., 1986, Cell junctions of astrocytes ependyma and related cells in the mammalian central nervous system with emphasis on the hypothesis of a generalised functional syncitium of supporting cells, in: “Astrocytes, Vol. 1, Development, Morphology and Regional Specialisation of Astrycotes”, S. Fedoroff and A. Vernadakis, eds., Academic Press, Orlando, pp 329–371.

    Google Scholar 

  • Newman, E. A., 1986, High potassium conductance in astrocyte end-feet, Science, 233: 453–454.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson, A., Liden, E. and Sellstrom, A., 1986, Some observations made by intracellular recordings in a primary astrocyte culture and a glioblastoma 138 MG, Acta Physiol Scand., 126: 413–417.

    Article  PubMed  CAS  Google Scholar 

  • Orkand, R. K., Nicholls, J. G. and Kuffler, S. W., 1966, The effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia, J. Neurophysiol., 29: 788–806.

    PubMed  CAS  Google Scholar 

  • Pearce, B., Albrecht, J., Morrow, C. and Murphy, S., 1986, Astroctyte glutamate receptor activation provides inositol phospholipid turnover and calcium flux, Neurosci. Lett., 72: 335–340.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, G. M. and Ribak, C. E., 1987, Hippocampus of the seizure-sensitive gerbil in a specific site for anatomical changes in the GABAergic system, J. comp. Neurol., 261: 405–412.

    Article  PubMed  CAS  Google Scholar 

  • Prosser, C. Ladd, 1973, “Comparative Animal Physiology”, W. B. Saunders, Philadelphia.

    Google Scholar 

  • Quick, I. A. and Laming, P. R., 1990, Relationship between ECG, EEG and SPS responses during arousal in the goldfish (carassius auratus), Comp. Biochem. Physiol., 95A(3): 459–471.

    Article  Google Scholar 

  • Raff, M. C., Abney, E. R., Cohen, J., Lindsay, R. and Noble, M., 1983, Two types of astrocytes in cultures of developing rat white matter: Differences in morphology, surface gangliosides and growth characteristics, J. Neurosci., 3:1289–1300.

    PubMed  CAS  Google Scholar 

  • Rakic, P., 1984, Emergence of neuronal and glial cell lineages in primate brain, in: “Cellular and Molecular Biology of Neuronal Development”, I. B. Black, ed., Plenum Press, New York.

    Google Scholar 

  • Ransom, B. R. and Carlini, W. G., 1986, Electrophysiological properties of astrocytes, in: “Astrocytes, Vol. 2, Biochemistry, Physiology and Pharmacology of Astrocytes”, S. Federoff and A. Vernadakis, eds., Academic Press, Orlando.

    Google Scholar 

  • Rockstroh, B., Elbert, T., Lutzenberger, W. and Birbaumer, N., 1982, The effects of slow cortical potentials on response speed, Psychophysiology, 19: 211–217.

    Article  PubMed  CAS  Google Scholar 

  • Rogozea, R., Florea-Ciocoiu, V. and Constantinovici, A., 1983, Habituation of the orienting reaction in patients with epileptogenic cerebral tumours, Biol. Psychol., 16: 65–84.

    Article  PubMed  CAS  Google Scholar 

  • Rohrbaugh, J. W., Syndulko, K. and Lindsley, D. B., 1978, Cortical slow negative waves following non-paired stimuli: effects of task factors, Electroenceph. clin. Neurophysiol., 45: 551–567.

    Article  PubMed  CAS  Google Scholar 

  • Rohrbaugh, J. W., Syndulko, K. and Lindsley, D. B., 1979, Cortical slow negative waves following non-paired stimuli: effects of modality, intensity and rate of stimulation, Electroenceph. clin. Neurophysiol., 46: 416–462.

    Article  PubMed  CAS  Google Scholar 

  • Roitbak, A. I., Fanardjhyan, V. V., Melkonyan, D. S. and Melkonyan, A. A., 1987, Contribution of glia and neurons to the surface negative potentials of the cerebral cortex during its electrical stimulation, Neuroscience, 20:1057;1067.

    Article  PubMed  CAS  Google Scholar 

  • Rowland, V., 1968, Cortical steady potential (direct current potential) in reinforcement and learning, in: “Progress in Physiological Psychology, Vol. 2”, E. Stellar and J. M. Sprague, eds., Academic Press, New York, pp 1–77.

    Google Scholar 

  • Schousboe, A., 1981, Transport and metabolism of glutamate and GABA in neurons and glial cells, Int. Rev. Neurobiol., 22:1–45.

    Article  PubMed  CAS  Google Scholar 

  • Somjen, G. G., 1984, Interstitial ion concentration and the role of neuroglia in seizures, in: “Electrophysiology of Epilepsy”, H. V. Wheal and P. A. Schwartzkron, eds., Academic Press, New York, pp 305–341.

    Google Scholar 

  • Stamm, J. S., Whipple, S. C. and Born, J., 1987, Effect of spontaneous cortical slow potentials on semantic information processing, Int. J. Psychobiol., 5:11–18.

    CAS  Google Scholar 

  • Swann, J. W. and Brady, R. J., 1983, Penicillin-induced epileptogenesis in immature rat CA3 hippocampal pyramidal cells, Devel. Brain Res., 12: 243–254.

    Article  Google Scholar 

  • Tang, C. M. and Orkand, R. K., 1986, Glutamate depolarisation of glial cells in Necturus optic nerve, Neurosci. Lett., 63:300–304.

    Article  PubMed  CAS  Google Scholar 

  • Thiessen, D. D., Lindzey, G. and Friend, H. C., 1968, Spontaneous seizures in the Mongolian gerbil, Psychon. Sci., 11:227–228.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Laming, P.R. (1993). Slow Potential Shifts as Indicants of Glial Activation and Possible Neuromodulation. In: McCallum, W.C., Curry, S.H. (eds) Slow Potential Changes in the Human Brain. NATO ASI Series, vol 254. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1597-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1597-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1599-3

  • Online ISBN: 978-1-4899-1597-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics