Skip to main content

Slow Cortical Potentials Reflect the Regulation of Cortical Excitability

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 254))

Summary

A model is described which postulates ways in which regulatory circuits within the brain might generate electrical activity underlying spontaneous EEG fluctuations and event-related slow potentials (ERP) of the brain. We suggest that slow potentials represent a measure of the excitability of cortical neuronal networks and that this excitability must be regulated within distinct limits. The regulation has reflexive characteristics but must contain anticipatory elements as well.

Five main postulates are basic to the model:

  1. (1)

    The electrical sources of event-related slow potentials and other large amplitude EEG activity reside in the dendritic trees of cortical pyramidal neurons.

  2. (2)

    Surface negative potentials represent a measure for the excitability in the underlying neural tissue, surface positivity signifies widespread absence of facilitation.

  3. (3)

    Slow potentials indicate availability and spatial allocation of resources for information processing performed by the underlying neural tissue. Direction of attention and memory search will generate negative potentials in those neural assemblies which process the respective concepts. Memory storage and updating of information require that large proportions of the neural network be shut off and therefore they are accompanied by widespread positive waves of high amplitude. The electrical source of these waves can be traced to neural populations not involved in the storage process.

  4. (4)

    Conscious processes arise above a certain amount of cortical excitability; they appear when threshold levels of negative DC shifts are exceeded.

  5. (5)

    The regulation of cortical excitability and thus of slow potentials is achieved in part via a feedback loop which runs through the basal ganglia, other subcortical structures and the thalamus, returning to the cortex. This feedback loop generates permanent fluctuations resulting in EEG waves. The loop has necessarily non-linear characteristics and therefore the EEG may best be analysed with methods from non-linear systems theory.

This paper describes evidence for these postulates and suggests ways of further testing the model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arieli, A., 1990, Novel strategies to unravel mechanisms of cortical function: From macro to micro recordings, Paper presented at the ‘Meeting on Brain Theory’, Ringberg.

    Google Scholar 

  • Bauer, H., 1984, Regulation of slow potentials affect task performance, in: “Self-regulation of the Brain and behavior”, T. Elbert, B. Rockstroh, W. Lutzenberger and N. Birbaumer, eds., Springer, Heidelberg/Berlin, pp 216–226.

    Chapter  Google Scholar 

  • Bear, M. F., Cooper, L. N. and Ebner, F. F., 1987, A physiological basis of a theory of synapse modification, Science, 237: 42–48.

    Article  PubMed  CAS  Google Scholar 

  • Bienenstock, E. L., Cooper, L. N. and Munro, P. W., 1982, Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex, J. Neuroscience, 2: 32–48.

    CAS  Google Scholar 

  • Birbaumer, N. and Elbert, T., 1988, P3: By-product of a by-product? Behavioral and Brain Sciences, 11: 375–376.

    Article  Google Scholar 

  • Birbaumer, N., Elbert, T., Canavan, A. and Rockstroh, B., 1990, Slow potentials of the cerebral cortex and behaviour, Physiological Reviews, 70:1–41.

    PubMed  CAS  Google Scholar 

  • Bonhoeffer, T., 1988, Synaptische Plastizität in Hippocampus-Slice-Kulturen, Dissertation, Universität Tübingen.

    Google Scholar 

  • Braitenberg, V., 1978, Cell assemblies in the cerebral cortex, in: “Theoretical Approach to Complex Systems”, R. Heim and G. Palm, eds., Springer, Berlin/Heidelberg, pp 171–188.

    Chapter  Google Scholar 

  • Braitenberg, V., 1984, “Vehicles-Experiments in Synthetic Psychology”, MIT Press, Cambridge, Mass.

    Google Scholar 

  • Braitenberg, V. and Schüz, A., 1991, Anatomy of the Cortex, Springer, Berlin/Heidelberg.

    Google Scholar 

  • Braun, Ch., Lutzenberger, W., Miltner, W. and Elbert, T., 1991, Can subcortical structures generate potentials large in amplitude? in: “Psychophysiological Brain Research”, C. H. M. Brunia, A. W. K. Gaillard and A. Kok, eds., Tilburg University Press, Tilburg, pp 31–35.

    Google Scholar 

  • Brooks, V. B., 1986, “The Neural Basis of Motor Control”, Oxford University Press, New York.

    Google Scholar 

  • Cairns, H., 1952, Disturbances of consciousness with lesions of the brainstem and diecenphalon, Brain, 75:109–145.

    Article  PubMed  CAS  Google Scholar 

  • Canavan, A. G. M. and Daum, I., 1991, Non-motoric functions of the cerebellum, TINS (In press).

    Google Scholar 

  • Canavan, A. G. M. and Sartory, G., 1990, “Klinische Neuropsychologie”, Enke-Verlag, Stuttgart.

    Google Scholar 

  • Canavan, A. G. M., Passingham, R. E., Marsden, C. D., Quinn, N., Wyke, M. and Polkey, C. E., 1989, Performance on learning tasks of patients in the early stages of Parkinson’s disease, Neuropsychologia, 27:141–156.

    Article  PubMed  CAS  Google Scholar 

  • Caspers, H., Speckmann, E. J. and Lehmenkühler, A., 1987, DC potentials of the cerebral cortex, seizure activity and changes in gas pressure, Rev. Physiol. Biochem. Pharmacol, 106:127–178.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, L. B., Salzberg, B. M., Davila, H. V., Ross, W. N., Landowne, D., Waggoner, A. S. and Wang, C. H., 1974, Changes in axon fluorescence during activity: Molecular probes of membrane potential, J. Membrane Biol., 19:1–36.

    Article  CAS  Google Scholar 

  • Collinridge, G. L. and Bliss, T. V. P., 1987, NMDA receptors-their role in long term potentiation, TINS, 10: 288–293.

    Google Scholar 

  • Deecke, L., 1976, Opening remarks on motor aspects in: “The Responsive Brain”, W. C. McCallum and J. R. Knott, eds., Wright, Bristol, pp 169–171.

    Google Scholar 

  • Deecke, L., Bashore, T., Brunia, C., Grünewald-Zuberbier, E., Grünewald, G. and Kristeva, R., 1984, Movement-related potentials and motor control, in: “Brain and Information”, R. Karrer, J. Cohen and P. Tueting, eds., N.Y. Acad. Sci., Vol. 425:398-428.

    Google Scholar 

  • Donchin, E. and Coles, M. G. H., 1988, P300 and context updating-reply to Verleger, Behavioral and Brain Sciences, 11: 357–374.

    Article  Google Scholar 

  • Elbert, T., 1986, Externally and self-induced CNV patterns of the brain hemispheres-a sign of task-specific preparation, Human Neurobiology, 5: 67–69.

    PubMed  CAS  Google Scholar 

  • Elbert, T., 1987, Regulation kortikaler Erregbarkeit: Im EEG ein deterministisches Chaos? in: “Zugang zum Vertändnis höherer Hirnfunktionen durch das EEG”, H. M. Weinmann, ed., W. Zuckerschwerdt Verlag, München, pp 93–107.

    Google Scholar 

  • Elbert, T. and Rockstroh, B., 1987, Threshold regulation-a key to the understanding of the combined dynamics of EEG and event-related potentials, J. Psychophysiology, 4: 317–333.

    Google Scholar 

  • Elbert, T., Lutzenberger, W., Rockstroh, B. and Birbaumer, N., 1983, When regulation of slow brain potentials fails-a contribution to the psychophysiology of perceptual aberration and anhedonia, in: “Advances in Biological Psychiatry”, J. Mendlewicz and H. M. van Praag, eds., Vol. 13, Karger, Basel, pp 98–106.

    Google Scholar 

  • Elbert, T., Rockstroh, B., Lutzenberger, W. and Birbaumer, N., 1981, The influence of low-level transcortical DC currents on response speed in humans, Int. J. Neuroscience, 14:101–114.

    Article  CAS  Google Scholar 

  • Elbert, T., Hommel, J. and Lutzenberger, W., 1985, The perception of the Necker cube reversion interacts with the Bereitschaftspotential, Int. J. Psychophysiology, 3: 5–12.

    Article  CAS  Google Scholar 

  • Elbert, T., Birbaumer, N., Rockstroh, B., Canavan, A., Lutzenberger, W., von Bülow, I. and Linden, A., 1991, Self-regulation of slow cortical potentials and its role in epileptogenesis, in: “International Perspectives on Self-Regulation and Health”, J. Carlson and R. Seifert, eds., Plenum Press, New York, pp 65–94.

    Chapter  Google Scholar 

  • Elbert, T., Birbaumer, N. and Rockstroh, B., 1990, Regulation of slow cortical potentials (SCP) in epileptic patients, in: “Psychophysiological Brain Research”, C. H. M. Brunia, A. W. K. Gaillard and A. Kok, eds., Tilburg University Press, Tilburg, pp 231–235.

    Google Scholar 

  • Groll-Knapp, E., Ganglberger, J. and Haider, M., 1977, Voluntary movement-related slow potentials in cortex and thalamus in man, in: “Attention, Voluntary Contraction and Event-related Cerebral Potentials”, J. Desmedt, ed., Karger, Basel, pp 164–173.

    Google Scholar 

  • Gustafson, B., Wigstrøm, H., Abraham, W. C. and Huang, Y. Y., 1987, Long term potentiation in the hippocampus using depolarising current pulses as the conditioning stimulus to single volley synaptic potentials, J. Neuroscience, 7,3: 774–780.

    Google Scholar 

  • Hassler, R., 1978, Striatal control of locomotion, intentional actions and of integrating and perceptive activity, J. Neurological Science, 36:187–224.

    Article  CAS  Google Scholar 

  • Hassler, R., 1980, Brain mechanisms of intention and attention with introductory remarks on other volitional processes, in: “Motivation, Motor and Sensory Processes of the Brain”, H. H. Kornhuber and L. Deecke, eds., Elsevier, Amsterdam, pp 585–614.

    Google Scholar 

  • Hassler, R., Dalle Ore, G., Dieckman, G., Bricolo, A. and Dolce, G., 1969, Behavioral and EEG arousal induced by stimulation of unspecific projection systems in a patient with post-traumatic apallic syndrome, Electroenceph. clin. Neurophysiol., 27:306–310.

    Article  PubMed  CAS  Google Scholar 

  • Hebb, D. O., 1949, “The Organization of behavior”, Wiley, New York.

    Google Scholar 

  • Hebb, D. O., 1961, Distinctive features of learning in the higher animal, in: “Brain Mechanisms and Learning”, J. F. Delafresnaye, ed., Oxford Univ. Press, New York, pp 147–161.

    Google Scholar 

  • Johnson, R. Jr., 1988, The amplitude of the P300 component of the event-related potential: Review and synthesis, in: “Advances in Psychophysiology”, P. J. Ackles, R. J. Jennings and M. G. H. Coles, eds., Vol. 3, Academic Press, New York, 69–135.

    Google Scholar 

  • Kemp, J. M. and Powell, T. P., 1970, The cortico-striate projection in the monkey, Brain, 93:525–546.

    Article  PubMed  CAS  Google Scholar 

  • Kemp, J. M. and Powell, T. P., 1971, The connections of the striatum and globus pallidus: Synthesis and speculation, Phil. Trans. Roy. Soc. London, B262:441–457.

    Google Scholar 

  • Libet, B., 1985, Unconscious cerebral initiative and the role of conscious will in voluntary action, Behavioural Brain Sciences, 8:529–566.

    Article  Google Scholar 

  • Libet, B., Wright, E. and Gleason, C., 1982, Readiness potential preceding unrestricted spontaneous vs. pre-planned voluntary acts, Electroenceph. clin. Neurophysiol., 54:322–335.

    Article  PubMed  CAS  Google Scholar 

  • Lorente de No, R., 1943, Cerebral cortex: Architecture, intracortical connections, motor projections, in: “Physiology of the Nervous System”, F. J. Fulton, ed., Oxford Univ. Press, New York, pp 274–313.

    Google Scholar 

  • Lutzenberger, W., Elbert, T., Rockstroh, B. and Birbaumer, N., 1985, Asymmetry of brain potentials related to sensorimotor tasks, Int. J. Psychophysiol., 2:281–291.

    Article  PubMed  CAS  Google Scholar 

  • Lutzenberger, W., Elbert, T. and Rockstroh, B., 1987, A brief tutorial on the implications of volume conduction for the interpretation of the EEG, J. Psychophysiology, 1: 81–89.

    Google Scholar 

  • Marsden, C. D., 1981, Motor activity and the output of the basal ganglia, TINS, 4:124–125.

    Google Scholar 

  • McCallum, W. C., 1988, Potentials related to expectancy, preparation and motor activity, in: “Human Event-related Potentials”, EEG Handbook (revised series Vol. 3), T. W. Picton, eds., Elsevier, Amsterdam, pp 427–534.

    Google Scholar 

  • McCallum, W. C., Papakostopoulos, D., Gombi, R., Winter, A. L., Cooper, R. and Griffith, H. B., 1973, Event-related slow potential changes in human brainstem, Nature, 242:465–467.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy, G. and Wood, C. C., 1985, Intracranial recordings of endogenous ERPs in humans. Paper presented on the 11th International Congress of Electroenceph. clin. Neurophysiol., London.

    Google Scholar 

  • Palm, G., 1982, “Neural Assemblies: An Alternative Approach to Artificial Intelligence”, Springer-Verlag, Berlin.

    Google Scholar 

  • Rebert, C., 1972, Cortical and subcortical slow potentials in the monkey’s brain during a preparatory interval, Electroenceph. clin. Neurophysiol., 33:389–402.

    Article  PubMed  CAS  Google Scholar 

  • Rockstroh, B., 1991, Effects of Clonazepam on hyperventilation-induced EEG changes in man, Epilepsy Research, (In press).

    Google Scholar 

  • Rockstroh, B., Elbert, T., Lutzenberger, W. and Birbaumer, N., 1982, The effects of slow cortical potentials on response speed, Psychophysiology, 19:211–217.

    Article  PubMed  CAS  Google Scholar 

  • Rockstroh, B., Elbert, T., Lutzenberger, W., Altenmüller, E., Birbaumer, N., Diener, H. C. and Dichgans, J., 1987, Effects of the anticonvulsant Carbamazepine on event-related brain potentials in humans, in: “Evoked Potentials III”, R. Barber and T. Blum, eds., Butterworths, Boston, pp 361–369.

    Google Scholar 

  • Rockstroh, B., Elbert, T., Canavan, A., Lutzenberger, W. and Birbaumer, N., 1989, “Slow Potentials and Behaviour”, Urban and Schwarzenberg, München.

    Google Scholar 

  • Rockstroh, B., Elbert, T., Lutzenberger, W. and Altenmüller, E., 1991, Effects of the anticonvulsatory benzodiazepine Clonazepam on event-related brain potentials in humans, Electroenceph. clin. Neurophysiol., 78:142–149

    Article  PubMed  CAS  Google Scholar 

  • Rockstroh, B., Elbert, T., Lutzenberger, W. and Birbaumer, N., 1990a, Biofeedback produced hemispheric asymmetry of slow cortical potentials and its behavioural effects, Int. J. Psychophysiology, 9:151–168.

    Article  CAS  Google Scholar 

  • Rockstroh, B., Elbert, T., Lutzenberger, W. and Altenmüller, E., 1990b, Effects of anticonvulsants on event-related potentials, in: “Psychophysiological Brain Research”, C. H. M. Brunia, A. W. K. Gaillard and A. Kok, eds., Tilburg University Press, Tilburg, pp 111–115.

    Google Scholar 

  • Rockstroh, B., Müller, M., Cohen, R., Elbert, T., 1992, Probing the functional brain state during P300-evocation, J. Psychophysiology, 6:265–273.

    Google Scholar 

  • Sasaki, K. and Gemba, H., 1991, Cortical potentials associated with voluntary movements. Paper presented at the IXth Int. Conference on Event-related Potentials of the Brain, Nordwijk.

    Google Scholar 

  • Schüz, A., 1990, The structure of the cortex. Paper presented at the’ Meeting on Brain Theory’, Ringberg.

    Google Scholar 

  • Schüz, A. and Palm, G., 1989, Density of neurons and synapses in the cerebral cortex of the mouse, J. Comp. Neurol., 286:442–455.

    Article  PubMed  Google Scholar 

  • Shibasaki, H., Shima, F. and Kuroiwa, Y., 1978, Clinical studies of the movement-related cortical potentials (MP) and the relationship between the dentato-rubro-thalamic pathway and readiness potential (RP), J. Neurology, 219:15–25.

    Article  CAS  Google Scholar 

  • Smith, M. E., Stapelton, J. M. and Halgren, E., 1986, Human medial temporal lobe potentials evoked in memory and language tasks, Electroenceph. clin. Neurophysiol., 63:145–163.

    Article  PubMed  CAS  Google Scholar 

  • Stamm, J. S., 1984, Performance enhancements with cortical negative slow potential shifts in monkey and man, in: “Self-regulation of the Brain and behavior”, T. Elbert, B. Rockstroh, W. Lutzenberger and N. Birbaumer, eds., Springer, Heidelberg/Berlin, pp 199–215.

    Chapter  Google Scholar 

  • Stodieck, S. R. and Wieser, H. G., 1987, Epicortical DC changes in epileptic patients, in: “Advances in Epileptology”, Vol. 16, P. Wolf, M. Dam, D. Janz and E. Dreifuss, eds., Raven Press, New York, pp 123–128.

    Google Scholar 

  • Tsuda, T., 1982, Contingent negative variation in Parkinsonism, Tokushima J. Exp. Medicine, 29: 87–94.

    CAS  Google Scholar 

  • Tsuda, T., 1984, CNV and the related thalamic activities-observations on the responses evoked by ipsilateral and contralateral hand movements, Tokushima J. Exp. Medicine, 31:29–32.

    CAS  Google Scholar 

  • Von Bülow, I., Elbert, T., Rockstroh, B., Lutzenberger, W. and Canavan, A., 1989, Effects of hyperventilation on EEG frequency and slow cortical potentials in relation to an anticonvulsant and epilepsy, J. Psychophysiology, 3:147–154.

    Google Scholar 

  • Willshaw, D. J., Buneman, O. P. and Longuet-Higgins, H. C., 1969, Non-holographic associative memory, Nature, 222: 960–962.

    Article  PubMed  CAS  Google Scholar 

  • Woodward, S. H., Brown, W. S., Marsh, J. T. and Dawson, M E., 1991, Probing P3 with secondary reaction time, Psychophysiology, 28:609–618.

    Article  PubMed  CAS  Google Scholar 

  • Yeterian, E. H. and Van Hoesen, G. W., 1978, Corticostriate projections in the rhesus monkey: The organization of certain cortico-caudate connections, Brain Research, 139:43–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Elbert, T. (1993). Slow Cortical Potentials Reflect the Regulation of Cortical Excitability. In: McCallum, W.C., Curry, S.H. (eds) Slow Potential Changes in the Human Brain. NATO ASI Series, vol 254. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1597-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1597-9_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1599-3

  • Online ISBN: 978-1-4899-1597-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics