Human Slow Potential Research: A Review

  • W. Cheyne McCallum
Part of the NATO ASI Series book series (NSSA, volume 254)

Abstract

The purpose of this review is to provide a background for the papers which follow. It does not purport to be comprehensive, but does seek to examine the various assertions that have been made during the last 30 years about the more slowly changing potentials recorded from the human brain. More extensive reviews of brain slow potential research may be found in Rockstroh et al. (1989) and McCallum (1988).

Keywords

Dopamine Caffeine Diazepam Acetylcholine Amphetamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arduini, A., 1958, Enduring potential changes evoked in the cerebral cortex by stimulation of the brainstem reticular formation and thalamus, in: “Reticular Formation of the Brain”, H. H. Jasper, ed., Little, Brown and Co., Boston, pp 333–351.Google Scholar
  2. Arduini, A., Mancia, M. and Mechelse, K., 1957, Slow potential changes in the cerebral cortex by sensory and reticular stimulation, Arch. Ital. Biol., 95:127–138.Google Scholar
  3. Arduini, A., 1961, Slow potential changes evoked by sensory and reticular stimulation, in: “Electrical Stimulation of the Brain”, D. E. Sheer, ed., University of Texas Press, Austin, pp 99–104.Google Scholar
  4. Bauer, H., Guttmann, G., Weber, G. and Trimmel, M., 1986, The brain-triggered CNV: Baseline effects on CNV and P300, in: “Cerebral Psychophysiology: Studies in Event-related Potentials”, W. C. McCallum, R. Zappoli and F. Denoth, eds., Electroenceph. clin. Neurophysiol., Suppl. 38: 232-234.Google Scholar
  5. Becker, W., Iwase, K., Jurgens, R. and Kornhuber, H. H., 1976, Bereitschaftspotential preceding voluntary slow and rapid hand movements, in: “The Responsive Brain”, W. C. McCallum and J. R. Knott, eds., J. Wright and Sons Ltd., Bristol, pp 99–102.Google Scholar
  6. Caspers, H., 1959, Uber dei Beziehungen zwischen Dendritpotential und Gleichspannung an der Hirnrinde, Pflügers Arch. ges. Physiol., 269:157–181.CrossRefGoogle Scholar
  7. Caspers, H., 1961, Changes of cortical DC potentials in the sleep-wakefulness cycle, in: “CIBA Foundation Symposium on the Nature of Sleep”, G. E. W. Wolstenholme and M. O’Connor, eds., Little, Brown and Co., Boston, 237–259.Google Scholar
  8. Cooper, R., McCallum, W. C. and Papakostopoulos, D., 1978, Bimodal slow potential theory of cerebral processing, in: “Multidisciplinary Perspectives in Event-related Brain Potential Research”, D. A. Otto, ed., U.S. Government Printing Office, Washington, pp 651–656.Google Scholar
  9. Deecke, L., Kornhuber, H. H., Schreiber, H., Lang, M., Lang, W., Kornhuber, A., Heise, B. and Keidel, M., 1986, Bereitschaftspotential associated with writing and drawing, in: “Cerebral Psychophysiology: Studies in Event-related Potentials”, W. C. McCallum, R. Zappoli and F. Denoth, eds.,. Electroenceph. clin. Neurophysiol., Suppl. 38:245-247.Google Scholar
  10. Donald, M. W., 1970, Direct current potentials in the human brain recorded during timed cognitive performance, Nature (Lond.), 227:1057–1059.CrossRefGoogle Scholar
  11. Donald, M. W., 1980, Memory, learning and event-related potentials, in: “Motivation, Motor and Sensory Processes of the Brain: Electrical Potentials, Behaviour and Clinical Use”, H. H. Kornhuber and L. Deecke, eds., Elsevier/North Holland, Amsterdam, pp 615–627.Google Scholar
  12. Elbert, T., Birbaumer, N., Lutzenberger, W. and Rockstroh, B., 1979, Biofeedback of slow cortical potentials: self-regulation of central autonomic patterns, in: “Biofeedback and Self-regulation”, N. Birbaumer and H. Kimmel, eds., Erlbaum Publ. Assoc, Hillsdale, NJ., 321–337.Google Scholar
  13. Elbert, T., Rockstroh, B., Lutzenberger, W. and Birbaumer, N., 1980, Biofeedback of slow cortical potentials I., Electroenceph. clin. Neurophysiol., 48:293–301.PubMedCrossRefGoogle Scholar
  14. Fuster, J. M., 1980, The Prefrontal Cortex, Raven Press, New York.Google Scholar
  15. Gumnit, R. J., 1960, DC potential changes from auditory cortex of cat, J. Neurophysiol., 23:667–675.PubMedGoogle Scholar
  16. Gumnit, R. J., 1961, The distribution of direct current responses evoked by sounds in the auditory cortex of the cat, Electroenceph. clin. Neurophysiol, 13:889–895.CrossRefGoogle Scholar
  17. Guttmann, G. and Bauer, H., 1984, The brain-trigger design, in: “Brain and Information: Event-related Potentials”, R. Karrer, J. Cohen and P. Tueting, eds., Ann. N.Y. Acad. Sci., 425: 671-675.Google Scholar
  18. Haider, M., Groll-Knapp, E. and Ganglberger, J. A., 1981, Event-related slow (DC) potentials in the human brain., Rev. Physiol. Biochem. Pharmacol, 88:125–197.PubMedCrossRefGoogle Scholar
  19. Haider, M., Ganglberger, J. A., Groll-Knapp, E. and Schmid, H., 1979, Averaged cortical and subcortical potentials during stereotactic operations in humans, in: “Origin of Cerebral Field Potentials”, E. Speckmann and H. Caspers, eds., Thieme, Stuttgart, pp 141–150.Google Scholar
  20. Hazemann, P., 1978, Effects of movement on sensory input, in: “Multidisciplinary Perspectives in Event-related Brain Potential Research”, D. A. Otto, ed., U.S. Govt. Printing Office, Washington, DC., pp 105–106.Google Scholar
  21. Hillyard, S. A. and Galambos, R., 1967, Effects of stimulus and response contingencies on a surface negative slow potential shift in man, Electroenceph. clin.Neurophysiol, 22:297–304.PubMedCrossRefGoogle Scholar
  22. Kohler, W. and O’Connell, D. N., 1957, Currents of the visual cortex in the cat, J. Cell Comp. Physiol., 49 Suppl. 2, 1–43.CrossRefGoogle Scholar
  23. Kohler, W., Neff, W. D. and Wegener, J., 1955, Currents of the auditory cortex in the cat, J. Cell Comp. Physiol, 45 Suppl. 1, 1–24.CrossRefGoogle Scholar
  24. Kornhuber, H. H. and Deecke, L., 1964, Hirnpotentialanderungen beim Menschen vor und nach willkurbewegungen dargestellt mit magnetbandspeicherung und ruckwartsanalyse, Pflügers Arch. ges. Physiol, 281: 52.Google Scholar
  25. Kornhuber, H. H. and Deecke, L., 1965, Hirnpotentialanderungen bei willkurbewegungen und passiven bewegungen des menschen: Bereitschaftspotential und reafferente potentiale, Pflügers Arch. ges. Physiol, 284:1–17.CrossRefGoogle Scholar
  26. Kristeva, R., 1984, Bereitschaftspotential with pianists, in: “Brain and Information”, R. Karrer, J. Cohen and P. Tueting, eds., The New York Academy of Sciences, New York, pp 477–482.Google Scholar
  27. Kutas, M. and Donchin, E., 1974, Studies of squeezing: handedness, responding hand, response force and asymmetry of readiness potentials, Science, 186:545–547.PubMedCrossRefGoogle Scholar
  28. Kutas, M. and Donchin, E., 1977, The effect of handedness, of responding hand, and of response force on the contra-lateral dominance of the readiness potential, in: “Attention, Voluntary Contraction and Event-related Cerebral Potentials”, J. E. Desmedt, ed., Progress in Clinical Neurophysiology, Vol. 1, Karger, Basel, pp 189–210.Google Scholar
  29. Libet, B., 1978, Slow postsynaptic responses to sympathetic ganglion cells as models for slow potential changes in the brain, in: “Multidisciplinary Perspectives in Event-related Brain Potential Research”, D. A. Otto, ed., U.S. Govt. Printing Office, Washington, DC., pp 12–18.Google Scholar
  30. Loveless, N. E. and Sandford, A. J., 1973, The CNV baseline: considerations of internal consistency of data, in: “Event-related Slow Potentials of the Brain: Their Relations to Behavior”, W. C. McCallum and J. R. Knott, eds., Electroenceph. clin. Neurophysiol., Suppl. 33:19-23.Google Scholar
  31. Marczynski, T. J., 1978, Neurochemical mechanisms in the genesis of slow potentials: a review and some clinical implications, in: “Multidisciplinary Perspectives in Event-related Brain Potential Research”, D. A. Otto, ed., U.S. Govt. Printing Office, Washington, DC., pp 23–35.Google Scholar
  32. McAdam, D. W., 1966, Slow potential changes recorded from human brain during learning of a temporal interval, Psychonom. Sci., 6:435–436.Google Scholar
  33. McCallum, W. C., 1969, The contingent negative variation as a cortical sign of attention in man, in: “Attention in Neurophysiology”, C. R. Evans and T. B. Mulholland, eds., Butterworths, London, pp 40–63.Google Scholar
  34. McCallum, W. C., 1973, CNV and conditionability in psychopaths, in: “Event-related Slow Potentials of the Brain: Their Relation to Behaviour”, W. C. McCallum and J. R. Knott, eds., Electroenceph. clin. Neurophysiol., Suppl. 33: 337-343.Google Scholar
  35. McCallum, W. C. and Walter, W. G., 1968, The effects of attention and distraction on the contingent negative variation in normal and neurotic subjects, Electroenceph. clin. Neurophysiol, 25: 319–329.PubMedCrossRefGoogle Scholar
  36. McCallum, W. C., Papakostopoulos, D., Gombi, R., Winter, A. L., Cooper, R. and Griffith, H. B., 1973, Event-related slow potential changes in human brainstem, Nature, 242: 465–467.PubMedCrossRefGoogle Scholar
  37. McCallum, W. C., Papakostopoulos, D. and Griffith, H. B., 1976, Distribution of CNV and other slow potential changes in human brainstem structures, in: “The Responsive Brain”, W. C. McCallum and J. R. Knott, eds., J. Wright and Sons Ltd., Bristol, pp 205–210.Google Scholar
  38. McCallum, W. C., Cooper, R. and Pocock, P. V., 1988, Brain slow potential and ERP changes associated with operator load in a visual tracking task, Electroenceph. clin. Neurophysiol., 69: 453–468.PubMedCrossRefGoogle Scholar
  39. McCallum, W. C. Potentials related to expectancy, preparation and motor activity, in: “Human Event-related Potentials. Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 3”, T. W. Picton, ed., Elsevier, Amsterdam, 1988, pp 427–534.Google Scholar
  40. Meshersky, R. M. and Smirnov, G. D., 1961, On the occurrence of rhythmic reaction of the cortex to flickering light, Dokl. Akad. Nauk. (USSR), 139:245–248.Google Scholar
  41. Mitzdorf, U., 1985, Current source-density method and application in cat cerebral cortex: Investigation of evoked potentials and EEG phenomena, Physiological Reviews, 65: 37–99.PubMedGoogle Scholar
  42. Mnukhina, R. S., 1961, On the electroencephalographic analysis of the mechanism of establishing a conditioned connection, Zh. Vyssh. Nerv. Deiat. (USSR), 11: 346–353.Google Scholar
  43. O’Leary, J. L., Kerr, F. W. L. and Goldring, S., 1958, The relation between spino-reticular and ascending cephalic systems, in: “Reticular Formation of the Brain”, H. H. Jasper, ed., Little, Brown and Co., 187-202.Google Scholar
  44. Rebert, C. S., 1972, Cortical and subcortical slow potentials in the monkey’s brain during a preparatory interval, Electroenceph. clin. Neurophysiol., 33: 389–402.PubMedCrossRefGoogle Scholar
  45. Rockstroh, B., Elbert, T., Lutzenberger, W. and Birbaumer, N., 1986, The CNV distraction effect in long anticipation intervals, in: “Cerebral Psychophysiology: Studies in Event-related Potentials”, W. C. McCallum, R. Zappoli and F. Denoth, eds., Electroenceph. clin. Neurophysiol., Suppl. 38: 265-266.Google Scholar
  46. Rockstroh, B., Elbert, T., Canavan, A., Lutzenberger, W. and Birbaumer, N. Slow cortical potentials and behaviour. Urban and Schwarzenberg, Munich, 1989.Google Scholar
  47. Rohrbaugh, J. W., Syndulko, K. and Lindsley, D. B., 1976, Brain wave components of the contingent negative variation in humans, Science, 191:1055–1057.PubMedCrossRefGoogle Scholar
  48. Rowland, V., 1963, Studies on learning: steady potential shifts in cortex, in: “Brain Function, Vol. 1: Cortical Excitability and Steady Potentials: Relations of Basic Research to Space Biology”, M. A. B. Brazier, ed., Univ. of California Press, Los Angeles, pp 136–147.Google Scholar
  49. Rowland, V. and Goldstone, M., 1963, Appetitively conditioned and drive related bioelectric baseline shift in cat cortex, Electroenceph. clin. Neurophysiol., 15: 474–485.PubMedCrossRefGoogle Scholar
  50. Rusinov, V. S., 1960, General and localized alterations in the electroencephalogram during the formation of conditioned reflexes in man, Electroenceph. clin. Electrophysiol., Suppl. 13: 309–313.Google Scholar
  51. Rusinov, V. S., 1961, The problem of stationary excitation and changes in the steady potential in the cerebral cortex in conditions of the dominant focus and during conditioned reflex formation, (in Russian), Zh. Vyssh. Nerv. Deiat. Pavlov, 11:6–19.Google Scholar
  52. Skinner, J. E., Yingling, C. D., 1976, Regulation of slow potential shifts in nucleus reticularis thalami by the mesencephalic reticular formation and the frontal granular cortex, Electroenceph. clin. Neurophysiol., 40: 288–296.PubMedCrossRefGoogle Scholar
  53. Tecce, J. J., 1971, Contingent negative variation and individual differences, Arch. gen. Psychiat., 24:1–16.PubMedCrossRefGoogle Scholar
  54. Tecce, J. J., 1972, Contingent negative variation (CNV) and psychological processes in man, Psychol. Bull, 77: 73–108.PubMedCrossRefGoogle Scholar
  55. Tecce, J. J., 1978, A CNV rebound function: Preliminary report, in: “Multidisciplinary Perspectives in Event-related Brain Potential Research”, D. A. Otto, ed., U.S. Government Printing Office, Washington, pp 222–225.Google Scholar
  56. Tecce, J. J. and Hamilton, B. T., 1973, CNV reduction by sustained cognitive activity (distraction), in: “Event-related Slow Potentials of the Brain: Their Relations to Behavior”, W. C. McCallum and J. R. Knott, eds., Electroenceph. clin. Neurophysiol., Suppl. 33:229-237.Google Scholar
  57. Tecce, J. J. and Scheff, N. M., 1969, Attention and DC potentials (Contingent Negative Variation) in the human brain, Psychophysiology, 5: 569–570.Google Scholar
  58. Tecce, J. J., Savignano-Bowman, J. and Neinbresse, D., 1976, Contingent negative variation and the distraction-arousal hypothesis, Electroenceph. clin. Neurophysiol., 41:277–286.PubMedCrossRefGoogle Scholar
  59. Thompson, J. W., Newton, P., Pocock, P. V., Cooper, R., Crow, H. J., McCallum, W. C. and Papakostopoulos, D., 1978, Preliminary study of pharmacology of contingent negative variation in man, in: “Multidisciplinary Perspectives in Event-related Brain Potential Research”, D. A. Otto, ed., US Government Printing Office, Washington, 51–55.Google Scholar
  60. Trimmel, M., 1986, DC potentials of the brain, in: “Clinical and Experimental Neuropsycho-pharmacology”, D. Papakostopoulos, S. Butler and I. Martin, eds., Croom Helm, London, 312–338.Google Scholar
  61. Tsubokawa, T., Moriyasu, N., 1978, Motivational slow negative potential shift (CNV) related to thalamotomy, Appl. Neurophysiol., 41:202–208.PubMedGoogle Scholar
  62. Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C. and Winter, A. L., 1964, Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain, Nature, 203:380–384.PubMedCrossRefGoogle Scholar
  63. Wilke, J. T. and Lansing, R. W., 1973, Variations in the motor potential with force exerted during voluntary arm movements in man, Electroenceph. clin. Neurophysiol., 35:259–265.PubMedCrossRefGoogle Scholar
  64. Weinberg, H., 1973, The contingent negative variation: its relation to feedback and expectant attention, in: “Event-related Slow Potentials of the Brain: Their Relations to Behavior”, W. C. McCallum and J. R. Knott, eds., Electroenceph. clin. Neurophysiol., Suppl. 33:219-228.Google Scholar
  65. Zappoli, R., 1978, Gli “event-related potentials”(ERSPs) in neuroglia. Rivista di Neurologia., 68: 105–130.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • W. Cheyne McCallum
    • 1
  1. 1.Burden Neurological InstituteStapleton, BristolUK

Personalised recommendations