Advertisement

Multipliers, Convolutors and Hypoelliptic Convolutors for Tempered Ultradistributions

  • Stevan Pilipović

Abstract

Malgrange’s, Ehrenpreis’s and Hörmander’s results on the solvability and the hy-poellipticity of convolution equations in Schwartz’s spaces of distributions stimulated many mathematicians to study such problems in various subspaces of distributions. We cite here only the results of Zielezny ([15], [16]) and Swartz ([12], [13]), since they are connected with the results of this paper. Convolution equations for ultradistribution spaces were studied by Meise, Taylor, Voigt and their cooperators; (see [1], [7] and references there.)

Keywords

Smooth Function Weak Topology Convolution Operator Convolution Equation Topological Isomorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.W. Braun, R. Meise, D. Vogt, Existence of fundanemal solutions and surjecivity of convolution operators on class of ultradifferentiable functions, Proc. London Math. Soc. (3)6 (1990), 344–370.MathSciNetCrossRefGoogle Scholar
  2. [2]
    A. Kaminski, D. Kovačević, S. Pilipovic, On the Convolution of Ultradistributions, preprint.Google Scholar
  3. [3]
    H. Komatsu, Ultradistributions, I ; Strucure theorems and a characterizaion, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 20 (1973), 25–105.MathSciNetMATHGoogle Scholar
  4. [4]
    H. Komatsu, Microlocal Analysis in Gevrey Class and in Complex Domains, preprint.Google Scholar
  5. [5]
    D.Kovačević, Some operations on the space S’ (Mp) of tempered ultradistributions, Univ. u Novom Sadu, Zb. Rad. Prirod.- Mat. Fak. Ser. Mat. to appear.Google Scholar
  6. [6]
    D.Kovačević, S. Pilipovic, Structural properties of the space of tempered ultradistributions, Proc. Conf. Complex Analysis and Applications ’91 with Symposium on Generalized Functions, Varna 1991, to appear.Google Scholar
  7. [7]
    R. Miese, K. Schwerdfeger, B.A. Taylor, On Kernels of Slowly decreasing convolution operators, DOGA Tr. J.Math. 10, 1 (1986).Google Scholar
  8. [8]
    A. Pietsch, Nukleare lokalkonvexe Raume, Akademie- Verlag, Berlin, 1965.Google Scholar
  9. [9]
    S. Pilipovic, Tempered Ultradistributions, Bul. Un. Math. Ital. (7) 2-B (1988).Google Scholar
  10. [10]
    S.Pilipovic, Characterizations of ultradistributions spaces and bounded sets, preprint.Google Scholar
  11. [11]
    H. Shaefer, Topological vector spaces, Collier- Mac - Millan, London, 1986.Google Scholar
  12. [12]
    C. Swartz, Convergence of convolution operators, Studia Math. XLII (1972), 249–257.MathSciNetGoogle Scholar
  13. [13]
    C. Swartz, Convolution in K{MP} spaces, Rocky Monntain J. Math. 2 (1972), 259–263.MathSciNetMATHGoogle Scholar
  14. [14]
    J. Uryga, On tensor product and convoluion of generalized functions of Gelfand -Shilov type, Generalized Functions and Convergence, Memorial Volume for Prof. J. Mikusinski, World Scientific Singapore, Ed. A. Antosik, A.Kaminski, 251–264.Google Scholar
  15. [15]
    Z. Zielezny, Hipoelliptic and enire elliptic convolution equations in subspaces of the space of distributions (II), Sudia Math. XXXII (1969), 47–59.MathSciNetGoogle Scholar
  16. [16]
    Z. Zielezny, Hipoelliptic and entire elliptic convolution equations in subspaces of the space of disribuions (I), Studia Math. XXVIII (1967), 317–332.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Stevan Pilipović
    • 1
  1. 1.Instiute of MathematicsUniversity of Novi SadNovi SadYugoslavia

Personalised recommendations