High Pressure Oxidation for Low Temperature Passivation of Si1-xGex Alloys

  • C. Caragianis
  • Y. Shigesato
  • D. C. Paine


Thermal passivation of Si1-xGex using high pressure (70 MPa) oxidation was studied for potential use in MOS-device applications. Alloys of CVD-grown Si1-xGex (with x=10 and 15 at. %), 200 and 150-nm thick respectively, were oxidized using high purity dry oxygen at a pressure of 70 MPa and a temperature of 500°C. For comparative purposes, a second set of alloys were oxidized using conventional wet atmospheric pressure oxidation at 800°C. X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Transmission electron microscopy (TEM) and MOS C-V measurements were used to characterize the as-grown oxides. Chemical analysis by XPS confirmed that under high pressure conditions, compositionally congruent oxides are grown from these alloys. High resolution TEM and Raman spectroscopy show that the as-grown oxide/semiconductor interface is planar and free of Ge enrichment on a scale of 1–2 monolayers. A midgap interface state density for both the 10 and 15 at. % samples of 1×1012 cm-2eV-1 was estimated based on 1 MHz C-V measurements.


Raman Spectroscopy High Resolution Transmission Electron Microscopy High Resolution Transmission Electron Microscopy Image Oxide Fixed Charge High Pressure Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.S. Iyer, G.L. Patton, J.M.C. Stork, B.S. Meyerson, D.L. Harame, IEEE Trans Electron Dev. 36, 2043(1989).CrossRefGoogle Scholar
  2. 2.
    P.M. Garone, V. Venkataraman, J.C. Sturm, IEEE Electron Device Let. 134, 56(1992).CrossRefGoogle Scholar
  3. 3.
    C. Caragianis, D.C. Paine, C. Roberts, and E. Crisman, High Pressure Oxidation of Strained Si1-xGex Alloys, in: “Chemical Perspectives of Microelectronic Materials II”, MRS, Pittsburgh(1991).Google Scholar
  4. 4.
    F.K. LeGoues, R. Rosenberg, T. Nguyen, F. Himpsel, and B.S. Meyerson, J. Appl. Phys., 65(4), 1724(1989).CrossRefGoogle Scholar
  5. 5.
    D.C. Paine, C. Caragianis, and A. F. Schwartzman, J. Appl. Phys., 70(9), 5076(1991).CrossRefGoogle Scholar
  6. 6.
    J. Reed, D.S.L. Mui, W. Jiang, and H. Morkoc, Electronics Letters, 27, 1826, (1991).CrossRefGoogle Scholar
  7. 7.
    E.E. Crisman, Y.M. Ercil, J.J. Loferski, and P.J. Stiles, J. Electrochem. Soc. 129, 1845(1982).CrossRefGoogle Scholar
  8. 8.
    J.C. Tsang, S.S. Iyer, and S.L. Delage, Appl. Phys. Lett., 51(21), 1732(1987).CrossRefGoogle Scholar
  9. 9.
    C.D. Wagner et. al., “Phi Handbook of Photoelectron Spectroscopy”, Perkin-Elmer Corp., Eden Prairie, Mn (1979).Google Scholar
  10. 10.
    D.C. Paine, C. Caragianis, Y. Shigesato, Appl. Phys. Lett., 60(23), 8(1992).CrossRefGoogle Scholar
  11. 11.
    S.M. Goodnick, D.K. Ferry, C.W. Wilmsen, Z. Liliental, D. Fathy, and O.L. Krivanek, Phys. Rev. B, 32, 8171(1985).CrossRefGoogle Scholar
  12. 12.
    S.M. Goodnick, R.G. Gann, D.K. Ferry, C.W. Wilmsen, and O.L. Krivanek, Surf. Sci.113, 233(1982).CrossRefGoogle Scholar
  13. 13.
    B.E. Deal, E. L. Mackenna, P.L. Castro, J. Electrochem. Soc., 116, 997(1969).CrossRefGoogle Scholar
  14. 14.
    L.M. Terman, Solid State Electronics, 5, 285 (1962).CrossRefGoogle Scholar
  15. 15.
    A. Goetzberger., Bell Syst. Tech. J., 45, 1097(1966).CrossRefGoogle Scholar
  16. 16.
    G.W. Neudeck, R.F. Pierret, Field Effect Devices, Addison-Wesley Pub. Co., Reading, MA (1990).Google Scholar
  17. 17.
    A.S. Grove, B.E. Deal, E. H. Snow, and C.T. Sah, Solid State Electronics, 8, 145(1965).CrossRefGoogle Scholar
  18. 18.
    S. Margalit, A. Bar-lev, A.B. Kuper, H. Aharoni, and A. Neugroschel, J. of Crys. Growth, 17:288(1972).CrossRefGoogle Scholar
  19. 19.
    P. Balk, J. Electrochem. Soc., 118(3), 494(1971)9.CrossRefGoogle Scholar
  20. 20.
    R.R. Razouk, B.E. Deal, J. Electrochem. Soc., 126(9), 1573(1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • C. Caragianis
    • 1
  • Y. Shigesato
    • 1
  • D. C. Paine
    • 1
  1. 1.Division of Engineering, Box D, Division of Engineering Brown UniversityBrown UniversityProvidenceUSA

Personalised recommendations