Advertisement

Defect Structure and Generation Mechanisms at the Si/SiO2 Interface

  • J. H. Stathis

Abstract

We first review recent work elucidating the oxide structure around the Pb center and illustrating important chemical differences among defects at the (100) interface. Then we present new results concerning the identification of defects generated by hot electrons in the gate oxide of devices. Using electrically-detected magnetic resonance to study interface degradation in MOSFETs, we observe the generation of Pb0 centers by hot-electron stress at fields above the electron heating threshold. In contrast, no Pb0 centers are created by electron-hole recombination near the interface, even though this process generates interface states.

Keywords

Electron Paramagnetic Resonance Interface State Capture Cross Section Trap Hole Interface State Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. H. Poindexter and P. J. Caplan, Prog. Surface Science 14, 210 (1983).Google Scholar
  2. 2.
    J. H. Stathis, S. Rigo, and I. Trimaille, Solid State Commun. 79, 119 (1991).CrossRefGoogle Scholar
  3. 3.
    J. H. Stathis, S. Rigo, I. Trimaille, and M. Crowder, Materials Science Forum 83–87, 1421 (1992).CrossRefGoogle Scholar
  4. 4.
    A. Stesmans and K. Vanheusden, Phys. Rev. B 44, 11353 (1991).CrossRefGoogle Scholar
  5. 5.
    F. Rochet, B. Agius, and S. Rigo, J. Electrochem. Soc. 131, 914 (1984).CrossRefGoogle Scholar
  6. 6.
    K. L. Brower, Z. Phys. Chem. Neue Folge 151, 177 (1987).CrossRefGoogle Scholar
  7. 7.
    K. L. Brower, Phys. Rev. B 33, 4471 (1986).CrossRefGoogle Scholar
  8. 8.
    E. H. Poindexter, P. J. Caplan, B. E. Deal, and R. R. Razouk, J. Appl. Phys. 52, 879 (1981).CrossRefGoogle Scholar
  9. 9.
    J. H. Stathis and L. Dori, Appl. Phys. Lett. 58, 1641 (1991).CrossRefGoogle Scholar
  10. 10.
    A. H. Edwards, in The Physics and Chemistry of SiO2 and the SiO2 Interface, edited by C. R. Helms and B. E. Deal (Plenum, New York, 1988), p. 271.CrossRefGoogle Scholar
  11. 11.
    T. R. Oldham, F. B. McLean, H. E. Boesh, and J. M. McGarrity, Semicond. Sci. Technol. 4, 986 (1989).CrossRefGoogle Scholar
  12. 12.
    D. J. DiMaria, in Insulating Films on Semiconductors, edited by W. Eccleston and M. Uren (Hilger, Bristol, 1991), p. 65. and references contained therein.Google Scholar
  13. 13.
    P. U. Kenkare and S. A. Lyon, Appl. Rev. Lett. 55, 2328 (1989).CrossRefGoogle Scholar
  14. 14.
    P. S. Winokur, H. E. Boesch, J. M. McGarrity, and F. B. McLean, J. Appl. Phys. 50, 3492 (1979).CrossRefGoogle Scholar
  15. 15.
    N. S. Saks and D. B. Brown, IEEE Trans. Nucl. Sci. 36, 1848 (1989).CrossRefGoogle Scholar
  16. 16.
    N. S. Saks, R. B. Klein, and D. L. Griscom, IEEE Trans. Nucl. Sci. 35, 1234 (1988).CrossRefGoogle Scholar
  17. 17.
    D. J. DiMaria and J. W. Stasiak, J. Appl. Phys. 65, 2342 (1989).CrossRefGoogle Scholar
  18. 18.
    M. V. Fischetti, D. J. DiMaria, S. D. Brorson, T. H. Theis, and J. R. Kirtley, Phys. Rev. B 31, 8124 (1985).CrossRefGoogle Scholar
  19. 19.
    S. D. Brorson, D. J. DiMaria, M. V. Fischetti, F. L. Pesavento, P. M. Solomon, and D. W. Dong, J. Appl. Phys. 58, 1302 (1985).CrossRefGoogle Scholar
  20. 20.
    D. Arnold, E. Cartier, and D. J. DiMaria, Phys. Rev. B 45, 1477 (1992).CrossRefGoogle Scholar
  21. 21.
    D. J. DiMaria, D. Arnold, and E. Cartier, Appl. Phys. Lett. 60, 2118 (1992).CrossRefGoogle Scholar
  22. 22.
    S. K. Lai, J. Appl. Phys. 54, 2540 (1983).CrossRefGoogle Scholar
  23. 23.
    D. A. Buchanan and D. J. DiMaria, J. Appl. Phys. 67, 7439 (1990).CrossRefGoogle Scholar
  24. 24.
    D. J. DiMaria, D. Arnold, and E. Cartier, this volume.Google Scholar
  25. 25.
    R. L. Vranch, B. Henderson, and M. Pepper, Appl. Phys. Lett. 53, 1161 (1988).CrossRefGoogle Scholar
  26. 26.
    A. S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, 1967).Google Scholar
  27. 27.
    D. J. Lepine, Phys. Rev. B 6, 436 (1972).CrossRefGoogle Scholar
  28. 28.
    J. T. Krick, P. M. Lenahan, and G. J. Dunn, Appl. Phys. Lett. 59, 3437 (1991).CrossRefGoogle Scholar
  29. 29.
    R. E. Mikawa and P. M. Lenahan, J. Appl. Phys. 59, 2054 (1986).CrossRefGoogle Scholar
  30. 30.
    D. J. DiMaria, J. Appl. Phys. 68, 5234 (1990).CrossRefGoogle Scholar
  31. 31.
    W. L. Warren and P. M. Lenahan, J. Appl. Phys. 62, 4305 (1987).CrossRefGoogle Scholar
  32. 32.
    W. L. Warren and P. M. Lenahan, Appl. Phys. Lett. 49, 1297 (1986).CrossRefGoogle Scholar
  33. 33.
    L. P. Trombetta, G. J. Gerardi, D. J. DiMaria, and E. Tierney, J. Appl. Phys. 64, 2343 (1988).CrossRefGoogle Scholar
  34. 34.
    P. Heremans, R. Bellens, G. Groeseneken, and H. E. Maes, IEEE Trans. Electron Devices 35, 2194 (1988).CrossRefGoogle Scholar
  35. 35.
    T. P. Ma, Semicond. Sci. Technol. 4, 1061 (1989).CrossRefGoogle Scholar
  36. 36.
    M. A. Jupina and P. M. Lenahan, IEEE Trans. Nucl. Sci. 37, 1650 (1990).CrossRefGoogle Scholar
  37. 37.
    Y. Y. Kim and P. M. Lenahan, J. Appl. Phys. 64, 3551 (1988).CrossRefGoogle Scholar
  38. 38.
    D. Vuillaume, D. Goguenheim, and G. Vincent, Appl. Phys. Lett. 57, 1206 (1990).CrossRefGoogle Scholar
  39. 39.
    N. Haneji, L. Vishnubhotla, and T. P. Ma, Appl. Phys. Lett. 59, 3416 (1991).CrossRefGoogle Scholar
  40. 40.
    M. J. Uren, K. M. Brunson, and A. M. Hodge, Appl. Phys. Lett 60, 625 (1992).CrossRefGoogle Scholar
  41. 41.
    D. Kaplan, I. Solomon, and N. F. Mott, J. Physique Lett. 39, L51 (1978).CrossRefGoogle Scholar
  42. 42.
    F. C. Rong, W. R. Buchwald, E. H. Poindexter, W. L. Warren, and D. J. Keeble, Solid State Electron. 34, 835 (1991).CrossRefGoogle Scholar
  43. 43.
    K. L. Brower and S. M. Meyers, Appl. Phys. Lett 57, 162 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • J. H. Stathis
    • 1
  1. 1.IBM Research DivisionT.J.Watson Research CenterYorktown HeightsUSA

Personalised recommendations