Solute Transport and Cell Energetics

  • Heribert Cypionka
Part of the Biotechnology Handbooks book series (BTHA, volume 8)


The main energy problems of a sulfate-reducing bacterium were described by Wood (1978), Stouthamer (1988), and Thauer (1989). In this chapter I try to develop a simplified unifying scheme of sulfate reduction. After some general considerations on the bioenergetics of sulfate reduction, we will follow the fate of a sulfate molecule metabolized by a sulfate-reducing bacterium, from uptake until excretion as H2S. Sulfate transport is discussed in detail, although no complete compilation of data is given. Each step of sulfate reduction will be discussed, mainly with hydrogen gas as a model electron donor. In the last part, we shall regard alternative processes related to energy conservation in sulfate-reducing bacteria (SRB), i.e., fermentation of organic compounds, disproportionation, and even oxidation of inorganic sulfur compounds, and use of alternate electron acceptors such as nitrate and molecular oxygen. Many of these processes have been detected recently and are unique for SRB. They demonstrate the metabolic flexibility of the energy metabolism of SRB, and will hopefully provide tools for the elucidation of the energy conservation during sulfate reduction.


Sulfate Reduction Sulfate Transport Sulfate Activation Proton Translocation Desulfovibrio Desulfuricans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdollahi, H., and Wimpenny, J. W. T., 1990, Effects of oxygen on the growth of Desulfovibrio desulfuricans, J. Gen. Microbiol. 136:1025–1030.CrossRefGoogle Scholar
  2. Akagi, J. M., 1981, Dissimilatory sulfate reduction, mechanistic aspects, in: Biology of Inorganic Nitrogen and Sulfur (H. Bothe and A. Trebst, eds.) Springer, Heidelberg, pp. 169–177.Google Scholar
  3. Ames, G. F.-L., 1988, Structure and mechanism of bacterial periplasmic transport systems, J. Bioenerget. Biomembr. 20:1–18.CrossRefGoogle Scholar
  4. Badziong, W., and Thauer, R. K., 1978, Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy source, Arch. Microbiol. 117:209–214.PubMedCrossRefGoogle Scholar
  5. Badziong, W., Thauer, R. K., and Zeikus, J. G., 1978, Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source, Arch. Microbiol. 117:209–214.PubMedCrossRefGoogle Scholar
  6. Badziong, W., and Thauer, R. K., 1980, Vectorial electron transport in Desulfovibrio vulgaris (Marburg), growing on hydrogen plus sulfate as sole energy source, Arch. Microbiol. 125:167–174.CrossRefGoogle Scholar
  7. Bak, F., and Cypionka, H., 1987, A novel type of energy metabolism involving fermentation of inorganic sulphur compounds, Nature 326:891–892.PubMedCrossRefGoogle Scholar
  8. Bak, F., and Pfennig, N., 1987, Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds, Arch. Microbiol. 147:184–189.CrossRefGoogle Scholar
  9. Barton, L. L., Le Gall, J., and Peck, H. D., Jr., 1970, Phosphorylation coupled to oxidation of hydrogen with fumarate in extracts of the sulfate reducing bacterium, Desulfovibrio gigas, Biochem. Biophys. Res. Commun. 41:1036–1042.PubMedCrossRefGoogle Scholar
  10. Barton, L. L., Le Gall, J., Odom, J. M., and Peck, H. D., 1983, Energy coupling to nitrite respiration in the sulfate-reducing bacterium Desulfovibrio gigas, J. Bacteriol. 153:867–871.PubMedGoogle Scholar
  11. Biebl, H., and Pfennig, N., 1977, Growth of sulfate-reducing bacteria with sulfur as electron acceptor, Arch. Microbiol. 112:115–117.PubMedCrossRefGoogle Scholar
  12. Bryant, M. P., Campbell, L. L., Reddy, C. A., and Crabill, M. R., 1977, Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria, Appl. Environ. Microbiol. 33:1162–1169.PubMedGoogle Scholar
  13. Chambers, L. A., and Trudinger, P. A., 1975, Are thiosulfate and trithionate intermediates in dissimilatory sulfate reduction? J. Bacteriol. 123:36–40.PubMedGoogle Scholar
  14. Chen, L., Liu, M. Y., Le Gall, J., Fareleira, P., Santos, H., and Xavier, A. V., 1993, Rubredoxin oxidase, a new flavo-hemo-protein, is the site of oxygen reduction to water by the strict anaerobe Desulfovibrio gigas, Biochem. Biophys. Res. Commun. 193:100–105.PubMedCrossRefGoogle Scholar
  15. Cruden, D. L., Durbin, W. E., and Markovetz, A. J., 1983, Utilization of PPi as an energy source by Clostridium sp., Appl. Environ. Microbiol. 46:1403–1408.PubMedGoogle Scholar
  16. Cypionka, H., 1986, Sulfide-controlled continuous culture of sulfate-reducing bacteria, J. Microbiol. Meth. 5:1–9.CrossRefGoogle Scholar
  17. Cypionka, H., 1987, Uptake of sulfate, sulfite and thiosulfate by proton-anion symport in Desulfovibrio desulfuricans, Arch. Microbiol. 148:144–149.CrossRefGoogle Scholar
  18. Cypionka, H., 1989, Characterization of sulfate transport in Desulfovibrio desulfuricans, Arch. Microbiol. 152:237–243.PubMedCrossRefGoogle Scholar
  19. Cypionka, H., 1994, Sulfate transport, in: Methods in Enzymology 243:3–14.CrossRefGoogle Scholar
  20. Cypionka, H., and Dilling, W., 1986, Intracellular localization of the hydrogenase in Desulfotomaculum orientis, FEMS Microbiol. Lett. 36:257–260.CrossRefGoogle Scholar
  21. Cypionka, H., and Pfennig N., 1986, Growth yields of Desulfotomaculum orientis with hydrogen in chemostat culture, Arch. Microbiol. 143:366–369.CrossRefGoogle Scholar
  22. Cypionka, H., Widdel, F., and Pfennig, N., 1985, Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients, FEMS Microbiol. Ecol. 31:39–45.CrossRefGoogle Scholar
  23. Dannenberg, S., Kroder, M., Dilling, W., and Cypionka, H., 1992, Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria, Arch. Microbiol. 158:93–99.CrossRefGoogle Scholar
  24. Dilling, W., and Cypionka, H., 1990, Aerobic respiration in sulfate-reducing bacteria, FEMS Microbiol. Lett. 71:123–128.Google Scholar
  25. Fauque, G., Herve, D., and LeGall, J., 1979, Structure-function relationship in hemoproteins: The role of cytochrome c3 in the reduction of colloidal sulfur by sulfater-educing bacteria, Arch. Microbiol. 121:261–264.PubMedCrossRefGoogle Scholar
  26. Fitz, R. M., and Cypionka, H., 1989, A study on electron transport-driven proton translocation in Desulfovibrio desulfuricans, Arch. Microbiol. 152:369–376.CrossRefGoogle Scholar
  27. Fitz, R. M., and Cypionka, H., 1990, Formation of thiosulfate and trithionate during sulfite reduction by washed cells of Desulfovibrio desulfuricans, Arch. Microbiol. 154:400–406.CrossRefGoogle Scholar
  28. Fitz, R. M., and Cypionka, H., 1991, Generation of a proton gradient in Desulfovibrio vulgaris, Arch. Microbiol. 155:444–448.CrossRefGoogle Scholar
  29. Furusaka, C., 1961, Sulphate transport and metabolism by Desulphovibrio desulphuricans, Nature 192:427–429.PubMedCrossRefGoogle Scholar
  30. Gottschal, J. C., and Szewzyk, R., 1985, Growth of a facultative anaerobe under oxygenlimiting conditions in pure culture and in co-culture with a sulfate-reducing bacterium. FEMS Microbiol. Ecol. 31:159–170.CrossRefGoogle Scholar
  31. Hansen, T. A., 1993, Carbon metabolism of sulfate-reducing bacteria, in: The sulfater-educing bacteria: Contemporary perspectives, (J. M. Odom and R. Singleton, Jr., eds.), Springer, New York, pp. 21–40.CrossRefGoogle Scholar
  32. Hooper, A. B., and DiSpirito, A. A., 1985, In bacteria which grow on simple reductants, generation of a proton gradient involves extracytoplasmic oxidation of substrate, Microbiol. Rev. 49:140–157.PubMedGoogle Scholar
  33. Hryniewicz, M., Sirko, A., Palucha, A., Böck, A., and Huilanicka, D., 1990, Sulfate and thiosulfate transport in Escherichia coli K12—Identification of a gene encoding a novel protein involved in thiosulfate binding, J. Bacteriol 172:3358–3366.PubMedGoogle Scholar
  34. Ingvorsen, K., and Jørgensen, B. B., 1984, Kinetics of sulfate uptake by freshwater and marine species of Desulfovibrio, Arch. Microbiol. 139:61–66.CrossRefGoogle Scholar
  35. Ingvorsen, K., Zehnder, A. J. B., and Jørgensen, B. B., 1984, Kinetics of sulfate and acetate uptake by Desulfobacter postgatei, Appl. Environ. Microbiol. 47:403–408.PubMedGoogle Scholar
  36. Ishimoto, M., 1959, Sulfate reduction in cell-free extracts of Desulfovibrio, J. Biochem. 46:105–106.Google Scholar
  37. Jeanjean, R., and Broda, E., 1977, Dependence of sulphate uptake by Anacystis nidulans on energy, on osmotic shock and on sulphate starvation, Arch. Microbiol. 114:19–23.PubMedCrossRefGoogle Scholar
  38. Jones, J. G., and Simon, B. M., 1984, The presence and activity of Desulfotomaculum spp. in sulphate-limited freshwater sediments, FEMS Microbiol. Lett. 21:47–50.CrossRefGoogle Scholar
  39. Keith, S. M., and Herbert, R. A., 1983, Dissimilatory nitrate reduction by a strain of Desulfovibrio desulfuricans, FEMS Microbiol. Lett. 18:55–59.CrossRefGoogle Scholar
  40. Kim, J. H., and Akagi, J. M., 1985, Characterization of trithionate reductase system from Desulfovibrio vulgaris, J. Bacteriol. 163:472–475.PubMedGoogle Scholar
  41. Klemps, R., Cypionka, H., Widdel, F., and Pfennig, N., 1985, Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species, Arch. Microbiol. 143:203–208.CrossRefGoogle Scholar
  42. Kobayashi, K., Tachibana, S., and Ishimoto, M., 1969, Intermediary formation of trithionate in sulfite reduction by sulfate-reducing bacteria, J. Biochem. 65:155–157.PubMedGoogle Scholar
  43. Kobayashi, K., Hasegawa, H., Takagi, M., and Ishimoto, M., 1982, Proton translocation associated with sulfite reduction in a sulfate-reducing bacterium Desulfovibrio vulgaris, FEBS Lett. 142:235–237.CrossRefGoogle Scholar
  44. Krämer, M., and Cypionka, H., 1989, Sulfate formation via ATP sulfurylase in thiosulfate-and sulfite-disproportionating bacteria, Arch. Microbiol. 151:232–237.CrossRefGoogle Scholar
  45. Kreke, B., and Cypionka, H., 1992, Protonmotive force in freshwater sulfate-reducing bacteria, and its role in sulfate accumulation in Desulfobulbus propionicus, Arch. Microbiol. 158:183–187.PubMedCrossRefGoogle Scholar
  46. Kreke, B., and Cypionka, H., 1994, Role of sodium ions for sulfate transport and energy metabolism in Desulfovibrio salexigens, Arch. Microbiol. 161:55–61.CrossRefGoogle Scholar
  47. Kremer, D. R., Veenhuis, M., Fauque, G., Peck, H. D., LeGall, J., Lampreia, J., Moura, J. J. G., and Hansen, T. A., 1988, Immunocytochemical localization of APS reductase and bisulfite reductase in three Desulfovibrio species, Arch. Microbiol. 150:296–301.CrossRefGoogle Scholar
  48. Kroder, M., Kroneck, P. M. H., and Cypionka, H., 1991, Determination of the transmembrane proton gradient in the anaerobic bacterium Desulfovibrio desulfuricans by 31P nuclear magnetic resonance, Arch. Microbiol. 156:145–147.CrossRefGoogle Scholar
  49. LeGall, J., and Fauque, G., 1988, Dissimilatory reduction of sulfur compounds, in: Biology of anaerobic microorganisms, (A. J. B. Zehnder, ed.), Wiley & Sons, New York, pp. 587–639.Google Scholar
  50. Littlewood, D., and Postgate, J. R., 1957, On the osmotic behaviour of Desulphovibrio desulphuricans, J. Gen. Microbiol. 16:596–603.PubMedCrossRefGoogle Scholar
  51. Liu, C.-L., and Peck, H. D., 1981, Comparative bioenergetics of sulfate reduction in Desulfovibrio and Desulfotomaculum spp., J. Bacteriol. 145:966–973.PubMedGoogle Scholar
  52. Liu, C.-L., Hart, N., and Peck, H. D., 1982, Inorganic pyrophosphate: energy source for sulfate-reducing bacteria of the genus Desulfotomaculum, Science 217:363–364.PubMedCrossRefGoogle Scholar
  53. Lupton, F. S., Conrad, R., and Zeikus, J. G., 1984, Physiological function of hydrogen metabolism during growth of sulfidogenic bacteria on organic substrates, J. Bacteriol. 159:843–849.PubMedGoogle Scholar
  54. Marschall, C., Frenzel, P., and Cypionka, H., 1993, Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria, Arch. Microbiol. 159:168–173.CrossRefGoogle Scholar
  55. Martinoia, E., 1992, Transport processes in vacuoles of higher plants, Bot. Acta 105:232–245.Google Scholar
  56. McCready, R. G. L., Gould, W. D., and Barendregt, R. W., 1983, Nitrogen isotope fractionation during the reduction of NO3 to 4 + by Desulfovibrio sp., Can. J. Microbiol. 29:231–234.CrossRefGoogle Scholar
  57. Miller, J. D. A., and Wakerly, D. S., 1966, Growth of sulphate-reducing bacteria by fumarate dismutation, J. Gen. Microbiol. 43:101–107.PubMedCrossRefGoogle Scholar
  58. Mitchell, G. J., Jones, J. G., and Cole, J. A., 1986, Distribution and regulation of nitrate and nitrite reduction by Desulfovibrio and Desulfotomaculum species, Arch. Microbiol. 144:35–40.CrossRefGoogle Scholar
  59. Myers, R. J., 1986, The new low value for the second dissociation constant for H2S. Its history, its best value, and its impact on the teaching of sulfide equilibria, J. Chem. Education 63:687–690.CrossRefGoogle Scholar
  60. Nethe-Jaenchen, R., and Thauer, R. K., 1984, Growth yields and saturation constant of Desulfovibrio vulgaris in chemostat culture, Arch. Microbiol. 137:236–240.CrossRefGoogle Scholar
  61. Nore, B. F., Husain, L, Nyrén, P., and Baltscheffsky, M., 1986, Synthesis of pyrophosphate coupled to the reverse energy-linked transhydrogenase reaction in Rhodospirillum rubrum chromatophores, FEBS Lett. 200:133–138.PubMedCrossRefGoogle Scholar
  62. Nyrén, P., and Strid, A., 1991, Hypothesis—The physiological role of the membranebound proton-translocating pyrophosphatase in some phototrophic bacteria, FEMS Microbiol. Lett. 77:265–269.CrossRefGoogle Scholar
  63. Odom, J. M., and Peck, H. D., 1981, Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp., FEMS Microbiol. Lett. 12:47–50.CrossRefGoogle Scholar
  64. Odom, J. M., and Peck, H. D., 1984, Hydrogenases, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio, Ann. Rev. Microbiol. 38:551–592.CrossRefGoogle Scholar
  65. Odom, J. M., and Wall, J. D., 1987, Properties of a hydrogen-inhibited mutant of Desulfovibrio desulfuricans ATCC 27774, J. Bacteriol. 169:1335–1337.PubMedGoogle Scholar
  66. Pankhania, I. P., Spormann, A. M., Hamilton, W. A., and Thauer, R. K., 1988, Lactate conversion to acetate, CO2 and H2 in cell suspensions of Desulfovibrio vulgaris (Marburg): Indications for the involvement of an energy driven step, Arch. Microbiol. 150:26–31.CrossRefGoogle Scholar
  67. Peck, H. D., 1959, The ATP-dependent reduction of sulfate with hydrogen in extracts of Desulfovibrio desulfuricans, Proc. Natl. Acad. Sci. USA 45:701–708.PubMedCrossRefGoogle Scholar
  68. Peck, H. D., 1960, Evidence for oxidative phosphorylation during the reduction of sulfate with hydrogen by Desulfovibrio desulfuricans, J. Biol. Chem. 235:2734–2738.PubMedGoogle Scholar
  69. Peck, H. D., 1966, Phosphorylation coupled with electron transfer in extracts of the sulfate-reducing bacterium Desulfovibrio gigas, Biochem. Biophys. Res. Commun. 22:112–118.PubMedCrossRefGoogle Scholar
  70. Peck, H. D., and LeGall, J., 1982, Biochemistry of dissimilatory sulphate reduction, Phil. Trans. Roy. Soc. London B 298:443–466.PubMedCrossRefGoogle Scholar
  71. Peck, H. D., LeGall, J., Lespinat, P. A., Berlier, Y., and Fauque, G., 1987, A direct demonstration of hydrogen cycling by Desulfovibrio vulgaris employing membrane-inlet mass spectrometry, FEMS Microbiol. Lett. 40:295–299.CrossRefGoogle Scholar
  72. Peck, H. D., and Lissolo, T., 1988, Assimilatory and dissimilatory sulphate reduction: enzymology and bioenergetics, in: The nitrogen and sulphur cycles, (J. A. Cole and S. J. Ferguson, eds.), Cambridge University Press, pp. 99-132.Google Scholar
  73. Pereiradasilva, L., Sherman, M., Lundin, M., and Baltscheffsky, H., 1993, Inorganic pyrophosphate gives a membrane potential in yeast mitochondria, as measured with the permeant cation tetraphenylphosphonium, Arch. Biochem. Biophys. 304:310–313.CrossRefGoogle Scholar
  74. Postgate, J. R., 1984, The sulphate-reducing bacteria. Cambridge University Press, 2nd edition.Google Scholar
  75. Reeves, R. E., and Guthrie, J. D., 1975, Acetate kinase (pyrophosphate). A fourth pyrophosphate-dependent kinase from Entamoeba histolytica, Biochem. Biophys. Res. Commun. 66:1389–1395.PubMedCrossRefGoogle Scholar
  76. Romero, I., Gomezpriego, A., and Celis, H., 1991, A membrane-bound pyrophosphatase from respiratory membranes of Rhodospirillum rubrum, J. Gen. Microbiol. 137:2611–2616.CrossRefGoogle Scholar
  77. Sass, H., Steuber, J., Kroder, M., Kroneck, P. M. H., and Cypionka, H., 1992, Formation of thionates by freshwater and marine strains of sulfate-reducing bacteria, Arch. Microbiol. 158:418–421.CrossRefGoogle Scholar
  78. Schink, B., 1992, Syntrophism among prokaryotes, in: The prokaryotes. A handbook on the biology of bacteria: Ecophysiology, isolation, identification, applications, (A. Balows, H. G. Trüper, M. Dworkin, W. Harder, K. H. Schleifer, eds.), Springer, New York, pp. 276–299.Google Scholar
  79. Scholes, P., and Mitchell, P., 1970, Respiration-driven proton translocation in Micrococcus denitrificans, Bioenergetics 1:309–323.CrossRefGoogle Scholar
  80. Seitz, H.-J., and Cypionka, H., 1986, Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite, Arch. Microbiol. 146:63–67.CrossRefGoogle Scholar
  81. Seitz, H.-J., Schink, B., Pfennig, N., and Conrad, R., 1990, Energetics of syntrophic ethanol oxidation in defined chemostat cocultures. 1. Energy requirement of H2 production and H2 oxidation, Arch. Microbiol. 155:89–93.CrossRefGoogle Scholar
  82. Stahlmann, J., Warthmann, R., and Cypionka, H., 1991, Na+-dependent accumulation of sulfate and thiosulfate in marine sulfate-reducing bacteria, Arch. Microbiol. 155:554–558.CrossRefGoogle Scholar
  83. Stams, A. J. M., Kremer, D. R., Nicolay, K., Weenk, G. H., and Hansen, T. A., 1984, Pathway of propionate formation in Desulfobulbus propionicus, Arch. Microbiol. 139:167–173.CrossRefGoogle Scholar
  84. Steenkamp, D. J., and Peck, H. D., 1981, Proton translocation associated with nitrite respiration in Desulfovibrio desulfuricans, J. Biol. Chem. 256:5450–5458.PubMedGoogle Scholar
  85. Steuber, J., Cypionka, H., Kroneck, P. M. H., 1994, Mechanism of dissimilatory sulfite reduction by Desulfovibrio desulfuricans: purification of a membrane-bound sulfite reductase and coupling with cytochrome c3 and hydrogenase, Arch. Microbiol. 162:255–260.Google Scholar
  86. Stouthamer, A. H., 1988, Bioenergetics and yields with electron acceptors other than oxygen, in: Handbook on anaerobic fermentations, (L. E. Erickson and D. Y.-C. Fung, eds.), Marcel Decker, New York, Basel, pp. 345–437.Google Scholar
  87. Thamdrup, B., Finster, K., Hansen, J. W., and Bak, F., 1993, Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese, Appl. Environ. Microbiol. 59:101–108.PubMedGoogle Scholar
  88. Thauer, R. K., 1989, Energy metabolism of sulfate-reducing bacteria, in: Autotrophic bacteria, (H. G. Schlegel and B. Bowien, eds.), Science Tech Publishers, Madison, pp. 397–413.Google Scholar
  89. Thauer, R. K., Jungermann, K., and Decker, K., 1977, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol Rev. 41:100–180.PubMedGoogle Scholar
  90. Thauer, R. K., and Morris, J. G., 1984, Metabolism of chemotrophic anaerobes: Old views and new aspects, in: The Microbe 1984: Part II, Prokaryotes and eukaryotes, (D. P. Kelly and N. G. Carr, eds.), Cambridge University Press, pp. 123-168.Google Scholar
  91. Thebrath, B., Billing, W., and Cypionka, H., 1989, Sulfate activation in Desulfotomaculum, Arch. Microbiol. 152:296–301.CrossRefGoogle Scholar
  92. Vainshtein, M. B., Matrosov, A. G., Baskunov, V. P., Zyakun, A. M., and Ivanov, M. V., 1980, Thiosulfate as an intermediate product of bacterial sulfate reduction, Microbiology (engl. Transi.) 49:672–675.Google Scholar
  93. Varma, A. K., and Peck, H. D., 1983, Utilization of short and long-chain polyphosphates as energy sources for the anaerobic growth of bacteria, FEMS Microbiol. Lett. 16:281–85.CrossRefGoogle Scholar
  94. Varma, A., Schönheit, P., and Thauer, R. K., 1983a, Electrogenic sodium ion/proton antiport in Desulfovibrio vulgaris, Arch. Microbiol. 136:69–73.CrossRefGoogle Scholar
  95. Varma, A. K., Rigsby, W., and Jordan, D. C., 1983b, A new inorganic pyrophosphate utilizing bacterium from a stagnant lake, Can. J. Microbiol. 29:1470–1474.PubMedCrossRefGoogle Scholar
  96. Ware, D. A., and Postgate, J. R., 1971, Physiological and chemical properties of reductantactivated inorganic pyrophosphatase from Desulfovibrio desulfuricans, J. Gen. Microbiol. 67:145–160.PubMedCrossRefGoogle Scholar
  97. Warthmann, R., and Cypionka, H., 1990, Sulfate transport in Desulfobulbus propionicus and Desulfococcus multivorans, Arch. Microbiol. 154:144–149.CrossRefGoogle Scholar
  98. West, I. C., and Mitchell, P., 1974, Proton/sodium ion antiport in Escherichia coli, Biochem. J. 144:87–90.PubMedGoogle Scholar
  99. Widdel, F., 1988, Microbiology and ecology of sulfate-and sulfur-reducing bacteria, in: Biology of anaerobic microorganisms, (A. J. B. Zehnder, ed.) Wiley & Sons, New York, pp. 469–585.Google Scholar
  100. Widdel, F., and Pfennig, N., 1977, A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans, Arch. Microbiol. 112:119–122.PubMedCrossRefGoogle Scholar
  101. Widdel, F., and Pfennig, N., 1982, Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov., Arch. Microbiol. 131:360–365.CrossRefGoogle Scholar
  102. Wood, P. M., 1978, A chemiosmotic model for sulphate respiration, FEBS Lett. 95:12–18.PubMedCrossRefGoogle Scholar
  103. Zehr, J. P., and Oremland, R. S., 1987, Reduction of selenate to selenide by sulfate-respiring bacteria: Experiments with cell suspensions and estuarine sediments, Appl. Environ. Microbiol. 53:1365–1369.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Heribert Cypionka
    • 1
  1. 1.Institut für Chemie und Biologies des MeeresCarl von Ossietzky Universität OldenburgOldenburgGermany

Personalised recommendations