Skip to main content

Respiratory Sulfate Reduction

  • Chapter
Sulfate-Reducing Bacteria

Part of the book series: Biotechnology Handbooks ((BTHA,volume 8))

Abstract

In the microbial world the dissimilatory sulfate-reducing bacteria (SRB) are unique in that they have the ability to utilize inorganic sulfate as a terminal electron acceptor. This respiratory process, occurring under anaerobic conditions, is conducted by SRB for the purpose of generating high energy compounds for biosynthetic reactions involved in their growth and maintenance. Because relatively large amounts of sulfate are required for this mode of life, a serious consequence resulting from the growth of sulfate reducers is the dissemination of massive quantities of hydrogen sulfide in their immediate vicinity. Because of the deleterious consequences that can result from the growth of sulfate reducers, microbiologists have been studying the physiology, biochemistry, and ecology of these microorganisms to learn how to control them in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akagi, J. M., 1981, Dissimilatory sulfate reduction, mechanistic aspects, in: Biology of Inorganic Nitrogen and Sulfur, (H. Boethe and A. Trebst, eds.), Springer-Verlag, New York, pp. 178–187.

    Chapter  Google Scholar 

  • Akagi, J. M., 1983, Reduction of bisulfite by the trithionate pathway by cell extracts from Desulfotomaculum nigrificans, Biochem. Biophys. Res. Commun. 117:530–535.

    Article  PubMed  CAS  Google Scholar 

  • Akagi, J. M. and Actams, V., 1972, Isolation of a bisulfite reductase activity from Desulfotomaculum nigrificans and its identification as the carbon monxide-binding pigment P582, J. Bacteriol. 116:392–396.

    Google Scholar 

  • Akagi, J. M. and Campbell, L. L., 1962, Studies on thermophilic sulfate-reducing bacteria. III. Adenosine triphosphate-sulfurylase of Clostridium nigrificans and Desulfovibrio desulfuricans, J. Bacteriol. 84:1194–1201.

    PubMed  CAS  Google Scholar 

  • Akagi, J. M., and Campbell, L. L., 1963, Inorganic pyrophosphatase of Desulfovibrio desulfuricans, J. Bacteriol. 86:563–568.

    PubMed  CAS  Google Scholar 

  • Aketagawa, J., Kobayashi, K., and Ishimoto, M., 1985, Purification and properties of thiosulfate reductase from Desulfovibrio vulgaris, Miyazaki F, J. Biochem. 97:1025–1032.

    PubMed  CAS  Google Scholar 

  • Aketagawa, J., Kojo, K., and Ishimoto, M., 1985, Purification and properties of sulfite reductase from Desulfovibrio vulgaris, Miyazaki F, Agri. Biol. Chem. 49:2359–2365.

    Article  CAS  Google Scholar 

  • Baliga, B. S., Vartak, H. G. and Jagannathan, V., 1961, Purification and properties of sulfurylase from Desulfovibrio desulfuricans, J. Scientific and Industrial Res. 20C:33–40.

    CAS  Google Scholar 

  • Bramlett, R. N., and Peck, H. D., 1975, Some physical and kinetic properties of adenylyl sulfate reductase from Desulfovibrio vulgaris, J. Biol. Chem. 250:2979–2986.

    PubMed  CAS  Google Scholar 

  • Chambers, L. A., and Trudinger, P. A., 1975, Are thiosulfate and trithionate intermediates in dissimilatory sulfate reduction?, J. Bacteriol. 123:36–40.

    PubMed  CAS  Google Scholar 

  • Drake, H. L. and Akagi, J. M., 1976, Purification of a unique bisulfite-reducing enzyme from Desulfovibrio vulgaris, Biochem. Biophys. Res. Commun. 71:1214–1219.

    Article  PubMed  CAS  Google Scholar 

  • Drake, H. L. and Akagi, J. M., 1977a, Bisulfite reductase of Desulfovibrio vulgaris: Explanation for product formation, J. Bacteriol. 132:139–143.

    PubMed  CAS  Google Scholar 

  • Drake, H. L. and Akagi, J. M., 1977b, Characterization of a novel thiosulfate-forming enzyme isolated from Desulfovibrio vulgaris, J. Bacteriol. 132:132–138.

    PubMed  CAS  Google Scholar 

  • Drake, H. L., and Akagi, J. M., 1978, Dissimilatory reduction of bisulfite by Desulfovibrio vulgaris, J. Bacteriol. 136:916–923.

    PubMed  CAS  Google Scholar 

  • Findley, J. E., and Akagi, J. M., 1970, Role of thiosulfate in bisulfite reduction as catalyzed by Desulfovibrio vulgaris, J. Bacteriol. 103:741–744.

    PubMed  CAS  Google Scholar 

  • Fitz, R. M., and Cypionka, H., 1989, A study on electron transport-driven proton translocation in Desulfovibrio desulfuricans, Arch. Microbiol. 152:369–376.

    Article  CAS  Google Scholar 

  • Fitz, R. M., and Cypionka, H., 1990, Formation of thiosulfate and trithionate during sulfite reduction by washed cells of Desulfovibrio desulfuricans, Arch. Microbiol. 154:400–406.

    Article  CAS  Google Scholar 

  • Hall, H. M., and Prince, R. H., 1981, Iron-containing reductases: Investigation of sulphur oxyanions in desulphoviridin from Desulphovibrio gigas, J. Inorg. Nucl. Chem. 43:815–823.

    Article  CAS  Google Scholar 

  • Haschke, R. H., and Campbell, L. L., 1971, Thiosulfate reductase of Desulfovibrio vulgaris, J. Bacteriol 106:603–607.

    PubMed  CAS  Google Scholar 

  • Hatchikian, E. C., 1975, Purification and properties of thiosulfate reductase of Desulfovibrio gigas, Arch. Microbiol. 105:249–256.

    Article  PubMed  CAS  Google Scholar 

  • Hatchikian, E. C., and Zeikus, J. G., 1983, Characterization of a new type of dissimilatory sulfite reductase present in Thermodesulfobacterium commune, J. Bacteriol. 153:1211–1220

    PubMed  CAS  Google Scholar 

  • Ishimoto, M., Koyama, J., and Nagai, Y., 1955, Biochemical studies on sulfate-reducing bacteria. IV. Reduction of thiosulfate by cell-free extract, J. Biochem. 42:41–53.

    CAS  Google Scholar 

  • Ishimoto, M., and Fujimoto, D., 1959, Adenosine-5′-phosphosulfate as an intermediate in the reduction of sulfate by a sulfate-reducing bacterium, Proc. Japan Acad. 35:243–245.

    CAS  Google Scholar 

  • Ishimoto, M. and Fujimoto, D., 1961, Biochemical studies of sulfate-reducing bacteria. X. Adenosine-5′-phosphosulfate reductase, J. Biochem. 50:299–304.

    Google Scholar 

  • Jones, H. E., and Skyring, G. W., 1974, Reduction of sulphite to sulphide catalyzed by desulfoviridin from Desulfovibrio gigas, Aust. J. Biol. Sci. 27:7–14.

    PubMed  CAS  Google Scholar 

  • Jones, H. E., and Skyring, G. W., 1975, Effect of enzymic assay conditions on sulfite reduction catalyzed by desulfoviridin from Desulfovibrio gigas, Biochem. Biophys. Acta 377:52–60.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. H., and Akagi, J. M., 1985, Characterization of a trithionate reductase system from Desulfovibrio vulgaris, J. Bacteriol. 163:472–475.

    PubMed  CAS  Google Scholar 

  • Kobayashi, K., Hasegawa, H., Takagi, M., and Ishimoto, M., 1982, Proton translocation associated with sulfite reduction in a sulfate-reducing bacterium, Desulfovibrio vulgaris, FEBS Lett. 142:235–237

    Article  CAS  Google Scholar 

  • Kobayashi, K., Seki, Y, and Ishimoto, M., 1974, Biochemical studies on sulfate-reducing bacteria. XII. Sulfite reductase from Desulfovibrio vulgaris—mechanism of trithionate, thiosulfate and sulfide formation and enzymatic properties, J. Biochem. 75:519–529.

    PubMed  CAS  Google Scholar 

  • Kobayashi, K., Tachibana, S. and Ishimoto, M., 1969, Intermediary formation of trithionate in sulfite reduction by a sulfate-reducing bacterium, J. Biochem. 65:155–157.

    PubMed  CAS  Google Scholar 

  • Kobayashi, K., Takahashi, E., and Ishimoto, M., 1972, Biochemical studies on sulfater-educing bacteria. XI. Purification and properties of sulfite reductase, desulfoviridin, J. Biochem. 72:879–887.

    PubMed  CAS  Google Scholar 

  • Lee, J-P., and Peck, H. D., 1971, Purification of the enzyme reducing bisulfite to trithionate from Desulfovibrio gigas and its identification as desulfoviridin, Biochem. Biophys. Res. Commun. 45:583–589.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J-P., LeGall, J., and Peck, H. D., 1973, Isolation of assimilatory-and dissimilatory-type sulfite reductases from Desulfoviribrio vulgaris, J. Bacteriol. 115:529–542.

    PubMed  CAS  Google Scholar 

  • Lee, J-P., Yi, C-S, LeGall, J., and Peck, H. D., 1973, Isolation of a new pigment, desulforubidin, from Desulfovibrio desulfuricans (Norway strain) and its role in sulfite reduction, J. Bacteriol. 115:453–455.

    PubMed  CAS  Google Scholar 

  • Liu, C-L., and Peck, H. D., 1981, Comparative bioenergetics of sulfate reduction in Desulfovibrio and Desulfotomaculum spp., J. Bacteriol. 145:966–973.

    PubMed  CAS  Google Scholar 

  • Massey, V., Muller, F., Feldberg, R., Schuman, M., Sullivan, P. A., Howell, L. G., Mayhew, S. G., Matthews, R. G., and Foust, G. P., 1969, The reactivity of flavoproteins with sulfite, J. Biol. Chem. 244:3999–4006.

    PubMed  CAS  Google Scholar 

  • Mayhew, S. G., Abels, R., and Platenkamp, R., 1977, The production of dithionite and SO2-by chemical reaction of (bi)sulphite with methyl viologen semiquinone, Biochem. Biophys. Res. Commun. 77:1397–1403.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. D. A., and Saleh, A. M., 1964, A sulphate-reducing bacterium containing cytochrome c3 but lacking desulphoviridin, J. Gen. Microbiol. 37:419–423.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, M. J. and Siegel, L. M., 1973, Siroheme and sirohydrochlorin, J. Biol. Chem. 248:6911–6919.

    PubMed  CAS  Google Scholar 

  • Murphey, M. J., Siegel, L. M., Kamin, H. and Rosenthal, D., 1973, Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. II. Identification of a new class of heme prosthetic groups: an iron-tetrahydroporphyrin (isobacteriochlorin type) with eight carboxylic acid groups, J. Biol. Chem. 248:2801–2814.

    Google Scholar 

  • Nakatsukasa, W., and Akagi, J. M., 1969, Thiosulfate reductase isolated from Desulfotomaculum nigrificans, J. Bacteriol. 98:429–433.

    PubMed  CAS  Google Scholar 

  • Peck, H. D., 1959, The ATP-dependent reduction of sulfite with hydrogen in extracts of Desulfovibrio desulfuricans, Proc. Natl. Acad. Sci. U.S.A. 45:701–708.

    Article  PubMed  CAS  Google Scholar 

  • Peck, H. D., 1961, Evidence for the reversibility of the reaction catalyzed by adenosine-5′-phosphosulfate reductase, Biochim. Biophys. Acta 49:621–624.

    Article  PubMed  CAS  Google Scholar 

  • Peck, H. D., and Bramlett, R. N., 1982, Flavoproteins in sulfur metabolism, in: 7th International Symposium on Flavin and Flavoproteins (V. Massey and G. Williams, eds.), University Park Press, Tokyo, pp. 851–858.

    Google Scholar 

  • Peck, H. D., and LeGall, J., 1982, Biochemistry of dissimilatory sulphate reduction, Phil. Trans. R. Soc. Lond. B298:443–466.

    Google Scholar 

  • Pierik, A. J., Duyvis, M. G., Helvoort, J. M. L. M., Wolbert, B. G. and Hagen, W. R., 1992, The third subunit of desulfoviridintype dissimilatory sulfite reductases, Eur. J. Biochem. 86:273–276.

    Google Scholar 

  • Postgate, J. R., 1956, Cytochrome c3 and desulphoviridin; pigments of the anaerobe Desulphovibrio desulphuricans, J. Gen. Microbiol. 37:545–572.

    Google Scholar 

  • Postgate, J. R., 1959, A diagnostic reaction of Desulphovibrio desulphuricans, Nature 37:419–423.

    Google Scholar 

  • Robbins, P. W., and Lipmann, F., 1958a, Separation of two enzymatic phases in active sulfate synthesis, J. Biol. Chem. 233:681–685.

    PubMed  CAS  Google Scholar 

  • Robbins, P. W., and Lipmann, F., 1958b, Enzymatic synthesis of adenosine-5′-phosphosulfate, J. Biol Chem. 233:686–690.

    PubMed  CAS  Google Scholar 

  • Sass, H., Steuber, J., Kroder, M., Kronek, P. M. H., and Cypionka, H., 1992, Formation of thionates by freshwater and marine strains of sulfate-reducing bacteria, Arch. Microbiol. 158:418–421.

    Article  CAS  Google Scholar 

  • Seki, Y., and Ishimoto, M., 1979, Catalytic activity of the chromophore of desulfoviridin, sirohydrochlorin, in sulfite reduction in the presence of iron, J. Biochem. 86:273–276.

    PubMed  CAS  Google Scholar 

  • Seki, Y., Kobayashi, K., and Ishimoto, M., 1979, Biochemical studies on sulfate-reducing bacteria. XV. Separation and comparison of two forms of desulfoviridin, J. Biochem. 85:705–711.

    PubMed  CAS  Google Scholar 

  • Seki, Y., Nagai, Y. and Ishimoto, M., 1985, Characterization of a dissimilatory-type sulfite reductase, desulfoviridin, from Desulfovibrio africanus Benghazi, J. Biochem. 98:1535–1543.

    PubMed  CAS  Google Scholar 

  • Seki, Y., Watanabe, S., and Seki, S., 1989, Formation of dithionite by sulfite reduction with Desulfovibrio vulgaris hydrogenase and cytochrome c3, Chem. Pharm. Bull. 37:2573–2575.

    Article  CAS  Google Scholar 

  • Skyring, G. W. and Jones, H. E., 1977, Dithionite reduction in the presence of a tetrapyrrole-containing fraction from the desulfoviridin of Desulfovibrio gigas, Aust. J. Biol Sci. 30:21–31.

    PubMed  CAS  Google Scholar 

  • Skyring, G. W., and Trudinger, P. A., 1972, A method for the electrophoretic characterization of sulfite reductases in crude preparations from sulfate-reducing bacteria using polyacrylamide gels, Can. J. Biochem. 50:1145–1148.

    Article  PubMed  CAS  Google Scholar 

  • Suh, B. and Akagi, J. M., 1969, Formation of thosulfate from sulfite by Desulfovibrio desulfuricans, J. Bacteriol 103:741–744.

    Google Scholar 

  • Thebrath, B., Dilling, W., and Cypionka, H., 1989, Sulfate activation in Desulfotomaculum, Arch. Microbiol. 152:296–301.

    Article  CAS  Google Scholar 

  • Trudinger, P. A., 1970, Carbon monoxide-reacting pigment from Desulfotomaculum nigrificans and its possible relevance to sulfite reduction, J. Bacteriol. 104:158–170.

    PubMed  CAS  Google Scholar 

  • Vainstein, M. B., Matrosoov, A. G., Baskunov, B. P., Zyakun, A. M., and Ivanov, M. V., 1980, Thiosulfate as an intermediate product of bacterial sulfate reduction, Mikrobiologi 49:855–858.

    CAS  Google Scholar 

  • Ware, D. and Postgate, J. R., 1970, Reductant-activation of inorganic pyrophosphatase: an ATP-conserving mechanism in anaerobic bacteria, Nature 226:1250–1251.

    Article  PubMed  CAS  Google Scholar 

  • Woolfolk, C. A., 1962, Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. II. Stoichiometry with inorganic sulfur compounds, J. Bacteriol. 84:659–668.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Akagi, J.M. (1995). Respiratory Sulfate Reduction. In: Barton, L.L. (eds) Sulfate-Reducing Bacteria. Biotechnology Handbooks, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1582-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1582-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1584-9

  • Online ISBN: 978-1-4899-1582-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics