Characteristics and Activities of Sulfate-Reducing Bacteria

  • Larry L. Barton
  • Francisco A. Tomei
Part of the Biotechnology Handbooks book series (BTHA, volume 8)


The sulfate-reducing bacteria (SRB) are a unique physiological group of procaryotes because they have the capability of using sulfate as the final electron acceptor in respiration. Initially, these bacteria were treated as biological curiosities and little research effort was devoted to them. An appreciation of the SRB grew, in part, from an interest in understanding their relationship with other life forms. In the last few decades, the metabolic processes of the SRB have received considerable attention, and from these observations it can be concluded that SRB are markedly similar to other bacteria. A hallmark characteristic that distinguishes SRB is the manner in which sulfate is metabolized. With the demonstration that SRB are broadly distributed on earth, it was recognized that these organisms displayed significant roles in nature by virtue of their potential for numerous interactions (Fig. 1). Recent reports have summarized specific life processes mediated by SRB (Postgate, 1984; Fauque et al., 1991; Odom and Singleton, 1993; Barton, 1993; Peck and LeGall, 1994; Widdel and Hansen, 1992). This chapter provides an insight into the basic activities of the SRB, with special reference to biotechnology.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akagi, J. M., 1967, Electron carriers for the phosphoroclastic reaction of Desulfovibrio desulfuricans, J. Biol. Chem. 242:2478–2483.PubMedGoogle Scholar
  2. Akagi, J. M., and Campbell, L. L., 1962, Studies on thermophilic sulfate-reducing bacteria III. Adenosine triphosphate sulfurylase of Clostridium nigrificans and Desulfovibrio desuifuricans, J. Bacteriol. 84:1194–1201.PubMedGoogle Scholar
  3. Bak, F., and Pfennig, N., 1991, Sulfate-reducing bacteria in littoral sediment of Lake Constance, FEMS Microbiol. Ecol. 85:43–52.CrossRefGoogle Scholar
  4. Baldi, F., Pepi, M., and Filippelli, M., 1993, Methymercury resistance in Desulfovibrio desulfuricans strains in relation to methylmercury degradation, Appl. Environ. Microbiol. 59:2479–2485.PubMedGoogle Scholar
  5. Baldwin, R. A., Sauter, J. C., Kaufman, J. W., and Laughlin, W. C., 1985, in: United States Patent number, 4,519,913.Google Scholar
  6. Barnes, L. J., Janssen, F. J., Scheeren, P. J. H., Versteegh, J. H., and Koch, R. O., 1992, Simultaneous microbial removal of sulfate and heavy metals from waste water, Transactions of the Institution of Mining and Metallurgy Section C Mineral Processing and Extractive Metallurgy, 101:183–189.Google Scholar
  7. Barreto M. C., and Cabrai, J. M. S., 1991, Immobilization of Desulfovibrio vulgaris with hydrogenase activity, J. Chem. Technol. Biotechnol. 50:563–570.CrossRefGoogle Scholar
  8. Barton, L. L., 1994, The pyruvic acid phosphoroclastic reaction in, Inorganic Microbiol. Sulfur Metabolism, Methods in Enzymology (H. D. Peck, Jr., and J. Le Gall, eds), Academic Press, San Diego, In Press.Google Scholar
  9. Barton, L. L. 1993, Sulfur metabolism, in: The Encyclopedia of Microbiology, Vol. 4 (J. Lederberg, ed.), Academic Press, San Diego, pp. 135–150.Google Scholar
  10. Barton, L. L., and Peck, H. D., Jr., 1971, Phosphorylation coupled to electron transfer between lactate and fumarate in cell-free extracts of the sulfate-reducing anaeobe, Desulfovibrio gigas, Bacteriol. Proc: 149.Google Scholar
  11. Barton, L. L., Odom, M., LeGall, J., and Peck, H. D., Jr., 1983, Energy coupling to nitrite respiration in the sulfate-reducing bacterium Desulfovibrio gigas, J. Bacteriol. 153:867–871.PubMedGoogle Scholar
  12. Bauman, A., Koenig, J. F., Dutreix, J., and Garcia, J. L., 1990, Characterization of 2 sulfate-reducing bacteria from the gut of the soil-feeding termite, Curitermes speciosus, J. Gen. Mol. Biol. 58:271–275.Google Scholar
  13. Beech, I. B., Gaylarde, C. C., Smith, J. J., and Geesey, G. G., 1991, Extracellular polysaccharides from Desulfovibrio desulfuricans and Pseudomonas fluorescens in the presence of mild and stainless steel, Appl. Microbiol. Biotechnol. 35:65–71.CrossRefGoogle Scholar
  14. Beck, J. V, 1947, Penn grade progress on use of bacteria for releasing oil from sands, Producers Monthly 11:13–19.Google Scholar
  15. Belyaeva, M. I., Mukhitova, F. K., Zolotukhina, L. M., Kiyachko, S. V, Bagaeva, T. V., and Karpilova, I. Y., 1992, Extracellular metabolic products of sulfate-reducing bacteria of the genus Desulfovibrio, Microbiol. 61:122-126.Google Scholar
  16. Bennett, E. O., 1957, The role of sulfate-reducing bacteria in the deterioration of cutting emulsions, Lubrication Engr. 13:215–219.Google Scholar
  17. Berman, M., Chase, T, Jr., and Bartha, R., 1990, Carbon flow in mercury biomethylation by Desulfovibrio desulfuricans, Appl. Environ. Microbiol. 56:298–300.PubMedGoogle Scholar
  18. Berner, R. A., 1962, Experimental studies of the formation of sedimentary iron sulfides, in: Biogeochemistry of Sulfur Isotopes (M. L. Jensen, ed.) Yale University Press, New Haven, pp. 156–172.Google Scholar
  19. Bianco, P., and Haladjian, J., 1991, Electrocatalysis at hydrogenase or cytochrome c-3 modified glassy electrodes, Electroanalysis 3:973–977.CrossRefGoogle Scholar
  20. Boopathy, R., and Daniels, L., 1991, Isolation and characterization of a furfural degrading sulfate-reducing bacterium from an anaerobic digester, Current Microbiol. 23:327–332.CrossRefGoogle Scholar
  21. Boopathy, R., and Tilche, A., 1992, Pelletization of biomass in a hybrid anaerobic baffled reactor (HABR) treating acidified wastewater, Bioresource Technol. 40:101–107.CrossRefGoogle Scholar
  22. Boopathy, R., and Kulpa, C. F., 1992, Trinitrotoluene (TNT) as a sole nitrogen source for a sulfate-reducing bacterium Desulfovibrio sp. (B strain) isolated from an anaerobic digester, Current Microbiol. 25:235–241.PubMedCrossRefGoogle Scholar
  23. Brierley, C. L., Brierley, J. A., and Davidson, M. S., 1989, Applied microbial processes for metal recovery and removal from wastewater, in: Metal Ions and Bacteria (T. J. Beveridge and R. J. Doyle, eds.) J. Wiley and Sons, New York, pp. 359–382.Google Scholar
  24. Bramlett, R. N., and Peck, H. D., Jr., 1975, Some physical and kinetic properties of adenylyl sulfate reductase from Desulfovibrio vulgaris J. Biol. Chem. 250:2979–2986.PubMedGoogle Scholar
  25. Bryant, R. D., Van Ommen Kloeke, K. F., and Laishley, E. J., 1993, Regulation of the periplasmic Fe hydrogenase by ferrous iron in Desulfovibrio vulgaris (Hildenborough), Appl. Environ. Microbiol. 59:491–595.PubMedGoogle Scholar
  26. Burton, C. P., and Akagi, J. M., 1971, Observations of the rhodanese activity of Desulfotomaculum nigrificans J. Bacteriol. 107:375–376.PubMedGoogle Scholar
  27. Bussmann, I., and Reichardt, W., 1991, Sulfate-reducing bacteria in temporarily toxic sediments with bivalves, Marine Ecol. Progress Series 78:97–102.CrossRefGoogle Scholar
  28. Campbell, L. L., and Singleton, R., Jr., 1986, Genus IV. Desulfotomaculum, in: Bergey’s Manual of Systematic Bacteriology (P.H.A. Sneath, N. S. Mair, M. E. Sharpe and J. G. Holt, eds.) Williams & Wilkins, Baltimore, pp. 1200–1205.Google Scholar
  29. CattanEo-Lacombe, Jr., Senez, J. C., and Beaumont, P., 1958, Sur la purification de la 4 aspartique d’Ecarboylase de Desulfovibrio desulfuricans, Biochim. et Biophys. Acta 30:458–465.CrossRefGoogle Scholar
  30. Chen, L., Liu, M.-Y., and Le Gall, J., 1991, Calcium is required for the reduction of sulfite from hydrogen in a reconstituted electron transfer chain from the sulfate-reducing bacterium, Desulfovibrio gigas, Biochem. Biophys. Res. Commun. 180:238–242.PubMedCrossRefGoogle Scholar
  31. Chen, L., Liu, M.-Y, Le Gall, J., Fareleira, P., Santos, H., and Xavier, A. V., 1993, Rubredoxin oxidase, a new flavo-hemo-protein, is the site of oxygen reduction to water by the “strict anaerobe” Desulfovibrio gigas, Biochem. Biophys. Res. Commun.Google Scholar
  32. Choi, S. C., and Bartha, R., 1993, Cobalamin-mediated mercury methylation by Desulfovibrio desulfuricans LS, Appl. Environ. Microbiol. 59:290–295.PubMedGoogle Scholar
  33. Christensen, B., Torsvik, T., and Lien, T., 1992, Immunomagnetically captured thermophilic sulfate-reducing bacteria from the North Sea oil field waters, Appl. Environ. Microbiol. 58:1244–1248.PubMedGoogle Scholar
  34. Cinquina, C. L., 1968, Isolation of tocopherol from Desulfotomaculum nigrificans, J. Bacteriol. 95:2436–2438.PubMedGoogle Scholar
  35. Christi, S. U., Gibson, G. R., and Cummings, J. H., 1992, Role of dietary sulphate in the regulation of methanogenesis in the human large intestine, Gut 33:1234–1238.CrossRefGoogle Scholar
  36. Clancy, P. B., Venkataraman, N., and Lynd, L. R., 1992, Biochemical inhibition of sulfate reduction in batch and continuous anaerobic digesters, Water Sci. and Technol. 25:51–60.Google Scholar
  37. Costerton, J. W., Boivin, J. W., Laishley, E. J., and Bryant, R. D., 1988, A new test for microbial corrosion, in: The 6th Asian-Pacific Corrosion Control Conference, Corrosion Association of Singapore Asian-Pacific Materials and Corrosion Association, Singapore, pp. 20–25.Google Scholar
  38. Czechowski, M. H., Chatelus, C., Fauque, G., Libertcoquempot, M. F., Lespinat, P. A., Berlier, Y., and Le Gall, Jr., 1990, Utilization of cathodically-produced hydrogen from mild steel by Desulfovibrio species with different types of hydrogenases, J. Industrial Microbiol. 6:227–233.CrossRefGoogle Scholar
  39. Czechowski, M. H., and Rossmoore, H. W., 1980, Factors affecting Desulfovibrio desulfuricans lactate dehydrogenase, Dev. Ind. Microbiol. 21:349–356.Google Scholar
  40. Czechowski, M. H., He, S. H., Nacro, M., DerVartanian, D. V., Peck, H. D., Jr. and Le Gall, J., 1984, A cytoplasmic nickel-iron hydrogenase with high specific activity from Desulfovibrio multispirans sp. n.: a new species of sulfate-reducing bacterium, Biochim. Biophys. Res. Commun. 125:1025–1032.CrossRefGoogle Scholar
  41. Deshmane, V., Lee, C. M., and Sublette, K. L., 1993, Microbial reduction of sulfur dioxide with pretreated sewage sludge and elemental hydrogen as electron donors, Appl. Biochem. Biotech. 39:739–752.CrossRefGoogle Scholar
  42. Doores, S., 1983, Bacterial spore resistance—species of emerging importance, Food Technol. 37:127–134.Google Scholar
  43. Draoui, K., Bianco, D., Haladjian, J., Guerlesquin, F., and Bruschi, M., 1991, Electrochemical investigation of intermolecular electron transfer between 2 physiological partners — cytochrome c 3 — and immobilized hydrogenase from Desulfovibrio desulfuricans Norway, J. Electroanalytical Chem. and Interfacial Electrochem. 313:201–214.CrossRefGoogle Scholar
  44. Dvorak, D. H., Hedin, R. S., and Edenborn, H. M., 1992, Treatment of metal-containing water using bacterial sulfate reduction: results from pilot-scale reactors, Biotechnol. Bioengr. 40:609–616.CrossRefGoogle Scholar
  45. Drake, H. L., and Akagi, J. M., 1977, Characterization of a novel thiosulfate-forming enzyme isolated from Desulfovibrio vulgaris, J. Bacteriol. 132:132–138.PubMedGoogle Scholar
  46. Eng, L. H., Lewin, M.B.M., and Neujahr, H. Y., 1993, Kinetic properties of the periplasmic hydrogenase from Desulfovibrio desulfuricans NCIMB 8372 and use in photosensitized H2 production, J. Chemical. Technol. and Biotechnol. 56:317–325.CrossRefGoogle Scholar
  47. Fauque, G., Le Gall, J., and Barton, L. L., 1991, Sulfate-reducing and sulfur-reducing bacteria, in: Variations in Autotrophic Life (J. M. Shively and L. L. Barton, eds.) Academic Press, London, pp. 271–338.Google Scholar
  48. Fauque, G., Peck, H. D., Jr., Moura, J. J. G., Huynh, B. H., Berlier, Y., DerVartanian, D. V., Teixeira, M., Przybyla, A. E., Lespinat, P. A., Moura, I., and Le Gall, J., 1988, The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio, FEMS Microbiol. Rev. 54:299–344.CrossRefGoogle Scholar
  49. Fenchel, T., and Ramsing, N. B., 1992, Identification of sulfate-reducing ectosymbiotic bacteria from anaerobic ciliates using 16S binding oligonucleotide probes, Arch. Microbiol. 158:394–397.PubMedCrossRefGoogle Scholar
  50. Fons, M., Cami, B., and Chippaux, M., 1991, Possible involvement of a L-delta-1-pyroline-5-carboxylate (P5C) reductase in the synthesis of proline in Desulfovibrio desulfuricans Norway, Biochem. Biophys. Res. Commun. 179:1088–1094.PubMedCrossRefGoogle Scholar
  51. Freke, A. M., and Tate, D., 1961, The formation of magnetic iron sulphide by bacterial reduction of iron solutions. J. Biochem. Microbiol. Technol. Engr. 3:29–39.CrossRefGoogle Scholar
  52. Fry, I., Papageorgiou, G., Tel-Or, E., and Packer, L., 1977, Reconstruction of a system for H2 evolution with chloroplasts, ferredoaxin, and hydrogenase, Z. Naturforsch 32c:110–117.Google Scholar
  53. Gevertz, D., Amelunxen, R., and Akagi, J. M., 1980, Cysteine synthesis by Desulfovibrio vulgaris extracts, J. Bacteriol. 141:1460–1462.PubMedGoogle Scholar
  54. Germano, G. J., and Anderson, K. E., 1968, Purification and properties of L-alanine dehydrogenase from Desulfovibrio desulfuricans, J. Bacteriol. 96:55–60.PubMedGoogle Scholar
  55. Gibson, G. R., Cummings, J. H., and Macfarlane, G. T, 1988, Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Appl. Environ. Microbiol. 54:2750–2755.PubMedGoogle Scholar
  56. Gibson, G. R., Cummings, J. H., Macfarlane, G. T., 1991, Growth and activities of sulphatereducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol. Ecol. 86:1003–111.CrossRefGoogle Scholar
  57. Gibson, G. R., Macfarlane, G. T., and Cummings, J. H., 1993, Sulphate reducing bacteria and hydrogen metabolism in the human large intestine, Gut 34:437–439.PubMedCrossRefGoogle Scholar
  58. Gibson, G. R., Macfarlane, G. T., and Cummings, J. H., 1988, Occurance of sulphatereducing bacteria in human feces and the relationship of dissimilatory sulphate reduction to methanogenesis. J. Appl. Bacteriol. 65:103–111.PubMedCrossRefGoogle Scholar
  59. Gilmour, C. C., Leavitt, M. E., and Shiaris, M. P., 1990, Evidence against incorporation of exogenous thymidine by sulfate-reducing bacteria, Linmol Oceanography 35:1401–1409.CrossRefGoogle Scholar
  60. Guarraia, L., and Peck, H. D., Jr., 1971, Dinitrophonol-stimulated adenosine triphosphatase activity in extracts of Desulfovibrio gigas, J. Bacteriol. 106:890–895.PubMedGoogle Scholar
  61. Haladjian, J., Draoui, K., Bianco, P., 1991. Electron transfer reaction of cytochrome c-3 at pyrolytic graphite electrodes, Electrochimica Acta 36:1423–1426.CrossRefGoogle Scholar
  62. Hammack, R. W., and Edenborn, H. M., 1992, The removal of nickel from mine waters using bacterial sulfate reduction, Appl. Microbiol. Biotechnol. 37:674–678.CrossRefGoogle Scholar
  63. Hansen, T. A., 1993, Carbon metabolism of sulfate-reducing bacteria, in: The Sulfate-Reducing Bacteria: Contempary Perspectives (J. M. Odom and R. Singleton, Jr., eds.) Springer-Verlag, Berlin, pp. 21–40.CrossRefGoogle Scholar
  64. Haschke, R. H., and Campbell, L. L., 1971, Thiosulfate reductase of Desulfovibrio vulgaris, J. Bacteriol. 106:603–607.PubMedGoogle Scholar
  65. Haschke, R., and Campbell, L. L., 1968, Partial resolution of the sulfite reducing system of Desulfovibrio vulgaris, Fedn. Proc. Fedn. Am. Socs. Expl. Biol. 27:390.Google Scholar
  66. Hatchikian, C. E., 1970, Menadione reductase from Desulfovibrio gigas, Biochim. Biophys. Acta 212:353–355.PubMedCrossRefGoogle Scholar
  67. Hatchikian, E. C., 1975, Purifican and properties of thiosulfate reductase from Desulfovibrio gigas, Arch. Microbiol. 105:249–256.PubMedCrossRefGoogle Scholar
  68. Hatchikian, E. C., Le Gall, J., and Bell, G. R., 1977, Significance of Superoxide dismutase and catalase activities in the strict anaerobes, sulfate-reducing bacteria, Superoxide and Superoxide Dismutases (A. M. Michelson, J. M. McCard and I. Fridovich, eds.) Academic Press, London, pp. 159–172.Google Scholar
  69. Hatchikian, E. C., Forget, N., Fernandez, V. M., Willliams, R., and Cammarack, R., 1992, Further characterization of the ‘Fe’ hydrogenase from Desulfovibrio desulfuricans ATCC 7757. Eur. J. Biochem. 209:357–365.PubMedCrossRefGoogle Scholar
  70. Hatchikian, E. C., and Le Gall, J., 1970, É tude du Métabolisme des acides dicarboxyliques et du private chez les bactéries sulfato-réductases. 1. É tude de l’oxidation enzymatique du fumarate en acétate, Annls. Inst. Pasteur, Paris 118:125–142.Google Scholar
  71. Hatchikian, E. C., Chaigneau, M., and Le Gall, J., 1976, Analysis of gas production by growing cultures of three species of sulfate-reducing bacteria, in: Microbial Production and Utilization of Gases (H. G. Schlegel, G. Gottschalk and J. N. Pfenning, eds.) K. B. Goltze, Gottingen, pp. 389–402.Google Scholar
  72. Hatchikian, E. C., and Monsan, P., 1980, Highly active immobilized hydrogenase from Desulfovibrio gigas, Biochem. Biophys Res. Commun. 92:1091–1096.PubMedCrossRefGoogle Scholar
  73. He, S. H., DeVartanian, D. V., and Le Gall, J., 1986, Isolation of fumarate reductase from Desulfovibrio multispirans a sulfate-reducing bacteria, Biochem. Biophys. Res. Commun. 135:1000–1007.PubMedCrossRefGoogle Scholar
  74. Herlihy, A. T., and Mills, A. L., 1985, Sulfate reduction in freshwater sediments receiving acid mine drainage, Appl. Environ. Microbiol. 49:179–186.PubMedGoogle Scholar
  75. Hodges, C. F., 1992a. Interaction of cyanobacteria and sulfate-reducing bacteria in subsurface black-layer forming in high sand content golf greens, Soil Biol. Biochem. 24:15–20.CrossRefGoogle Scholar
  76. Hodges, C. F., 1992b. Pathogenicity of Pythium torulosum to roots of Agrsotis palustrus in black-layered sand produced by the interaction of the cyanobacterium species Lyngbya, phormidium, and Nostoc with Desulfovibrio desulfuricans, Can. J. Botany, 70:2193–2197.CrossRefGoogle Scholar
  77. Hooguliet, J. C., Vanos, P. J. H. J., Vandermark, E. J., and VanBennekom, W. P., 1991, Modification of glassy carbon electrode surfaces with mediations and bridge molecules, Biosensors and Bioelectronics, 6:413–423.CrossRefGoogle Scholar
  78. Jackson, T. A., 1978, The biochemistry of heavy metals in polluted lakes and streams at Fin Lion, Canada, and a proposed method for limiting heavy metal pollution of natural waters, Inviron. Geol. 2:173–189.CrossRefGoogle Scholar
  79. Jankowski, G. J., and ZoBell, C. E., 1944, Hydrocarbon production by sulfate-reducing bacteria. J. Bacteriol. 47:447.Google Scholar
  80. Jones, H. E., and Chambers, L. A., 1975, Localization of intracellular polyphosphate formation by Desulfovibrio gigas, J. General. Microbiol. 89:67–72.CrossRefGoogle Scholar
  81. Kamimura, K., and Araki, M., 1989, Isolation and characterization of a bacteriophage lytic for Desulfovibrio salexigens, a salt-requiring sulfate-reducing bacterium, Appl. Environ. Microbiol. 55:645–648.PubMedGoogle Scholar
  82. Klemm, D., and Barton, L. L., 1987, Purification and properties of protoporphyrinogen odixase from an anaerobic bacterium, Desulfovibrio gigas, J. Bacteriol. 169:5209–5215.PubMedGoogle Scholar
  83. Klemm, D., and Barton, L. L., 1989, Protoporphyrinogen oxidation coupled to nitrite reduction with membranes from Desulfovibrio gigas, FEMS Microbiol. Lett. 61:61–64.CrossRefGoogle Scholar
  84. La RiviEre, J. W. Q. M., 1955, The production of surface active compounds by microorganisms and its possible significance in oil recovery. 2. On the release of oil from oilsand mixtures with the aid of sulfate-reducing bacteria. Antonine van Leeuwenhoek, J. Mikrobiol. Serol. 21:9–27.Google Scholar
  85. Lee, J.-P., Le Gall, J., and Peck, H. D., Jr., 1971a, Purification of an assimilatory type of sulfite reductase from Desulfovibrio vulgaris, Fedn. Proc. Fedn. Am. Soc. Exp. Biol. 30:1202.Google Scholar
  86. Lee, J-P., and Peck, H. D., Jr., 1971b, Purification of the enzyme reducing bisulfite to trithionate from Desulfovibrio gigas and its identification as desulfoviridin, Biochem Biopohys. Res. Commun. 45:583–589.CrossRefGoogle Scholar
  87. Lee, J.-P., Yi, C.-S, Le Gall, J., and Peck, H. D., Jr., (1973), Isolation of a new pigment, desulforubidin, from Desulfovibrio desulfuricans (Norway strain) and its role in sulfite reduction, J. Bacteriol. 115:453–455.PubMedGoogle Scholar
  88. Lee, K. H., and Sublette, K. L. 1991, Simultaneous combined microbial removal of sulfur dioxide and nitric oxide from a gas stream, Appl. Biochem and Biotech. 28-29:623–634.CrossRefGoogle Scholar
  89. Levin, R. E., Ng, H., Nagel, C. W., and Vaughn, R. H., 1959, Desulfovibrios associated with hydrogen sulfide formation in olive brines, Bacteriol. Proc. p. 7.Google Scholar
  90. Le Gall, J., 1968, Purification particle et étude de la NAD: rubredoxine oxydo-réductase de D. gigas, Annls. Inst. Pasteur, Paris, 114:109–115.Google Scholar
  91. Le Gall, J., and Postgate, J. R., 1973, The physiology of sulphate-reducing bacteria, Adv. Microbial. Physiol. 10:81–133.CrossRefGoogle Scholar
  92. Lissolo, T., Choi, E. S., Le Gall, J., and Peck, H. D., Jr., 1986, The presence of multiple intrinsic membrane nickel-containing hydrogenases in Desulfovibrio vulgaris (Hildenborough), Biochem. Biophys. Res. Commun. 139:701–708.PubMedCrossRefGoogle Scholar
  93. Lissolo, T., Cocquempot, M.-F., Thomas, D., Le Gall, J., Schneider, K., and Schlegel, H. G., 1983, Hydrogen production using chloroplast membranes without oxygen scavengers: an assay with hydrogenases from Desulfovibrio sp., Eur. J. Appl. Microbiol. Biotechnol 17:158–162.CrossRefGoogle Scholar
  94. Little, B., Wagner, P., and Mansfeld, F., 1991, Microbiologically influenced corrosion of metals and alloys. International Materials Rev. 36:253–272.Google Scholar
  95. Liu, M. C., and Peck, H. D., Jr., 1981, The isolation of a hexaheme cytochrome from Desulfovibrio desulfuricans and its identification as a new type of nitrite reductase. J. Biol. Chem. 256:13159–13164.PubMedGoogle Scholar
  96. Lovley, D. R., and Phillips, E. J. P., 1992a, Reduction of uranium by Desulfovibrio desulfuricans, Appl. Environ. Microbiol. 58:850–856.PubMedGoogle Scholar
  97. Lovley, D. R., and Phillips, E. J. P., 1992b, Bioremediation of uranium contamination with enzymatic uranium reduction, Environ. Sci. and Technol. 26:2228–2234.CrossRefGoogle Scholar
  98. Lovley, D. R., Widman, P. K., Woodward, J. C., and Phillips, E. J. P., 1993c, Reduction of uranium by cytrochrome c3 of Desulfovibrio vulgaris, Appl. Environ. Microbiol. 59:3572–3576.PubMedGoogle Scholar
  99. Lovley, D. R., Roden, E. E., Phillips, E. J. P., and Woodward, J. C., 1993b, Enzymatic iron and uranium reduction by sulfate-reducing bacteria, Marine Geol. 113:41–53.CrossRefGoogle Scholar
  100. Lovley, D. R., Giovannoni, S. J., White, D. C., Champine, J. E., Phillips, E. J. P., Gorby, Y. A., and Goodwin, S., 1993a, Geobacter metalireducens gen. nov. sp. nov. a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 159:336–344.PubMedCrossRefGoogle Scholar
  101. Macfarlane, G. T., Gibson, G. R., and Cummings, J. H., 1992, Comparison of fermentation reactions in different regions of the human colon, J. Appl. Bacteriol. 72:57–62.PubMedGoogle Scholar
  102. McCready, R. G. L., Gould, W. D., and Barendregt, R. W., 1983, Nitrogen isotope fractionation during the reduction of NO3− to NH4 + by Desulfovibrio sp., Can. J. Microbioi. 29:231–234.CrossRefGoogle Scholar
  103. Makula, R. A., and Meagher, R. B., 1980, A new restriction endonuclease from the anaerobic bacterium, Desulfovibrio desulfuricans, Norway, Nucleic Acids Res. 8, 3125–3131.PubMedCrossRefGoogle Scholar
  104. Mason, G. M., and Kirchner, G., 1992, Authentic pyrite-evidence for a microbial origin of tar sand, Fuel 71:1403–1405.CrossRefGoogle Scholar
  105. Meyer, O., and Fiebig, K., 1985, Enzymes oxidizing carbon monoxide, in: Gas Enzytnology (H. Degn, R. P. Cox, H. Toftlundeds, eds.) D. Reidel Publishing Co. Boston, pp. 147–168.CrossRefGoogle Scholar
  106. Miller, L. P., 1950, Formation of metal sulphides through the activities of sulphatereducing bacteria. Contr. Boyce Thomson Inst. 16:85–89.Google Scholar
  107. Mitchell, G.J., Jones, J. G., and Cole, J. A., 1986, Distribution and regulation of nitrate and nitrite reduction by Desulfovibrio and Desulfotomaculum species, Arch. Microbioi. 144:35–40.CrossRefGoogle Scholar
  108. Mori, T., Koga, M., Hikosaka, Y., Nonaka, T., Mishina, F., Sakai, Y, and Koizumi, J., 1991, Microbial corrosion of concrete sewer pipes, H2S production from sediments and determination of corrosion rate, Water Sci. Technol. 23:1275–1282.Google Scholar
  109. Nakatsukasa, W., and Akagi, J. M., 1969, Thiosulfate reductase isolated from Desulfotomaculum nigrificans, J. Bacteriol. 98:429–433.PubMedGoogle Scholar
  110. Nanninga, H. J., and Gottschal, J. C., 1987, Properties of Desulfovibrio carbinolicus sp. nov. and other sulfate-reducing bacteria isolated from an anaerobic-purification plant, Appl. Environ. Microbioi. 53:802–809.Google Scholar
  111. Niviere, V., Forget, N., Gayda, J. P., and Hatchikian, E. C., 1986, Characterization of the soluble hydrogenase from Desulfovibrio africanus, Biochem. Biophys. Res. Commun. 139:658–665.PubMedCrossRefGoogle Scholar
  112. Novelli, G. D., and ZoBell, C. E., 1944, Assimilation of petroleum hydrocarbons by sulfater-educing bacteria, J. Bacteriol. 47:447–448.Google Scholar
  113. Ochynski, F. W., and Postgate, J. R., 1963, Some biochemical differences between fresh water and salt water strains of sulfate-reducing bacteria, in: Symposium on Marine Microbiology (C. H. Oppenheimer, ed.) C. C. Thomas Publisher, Springfield, IL, pp. 426–441.Google Scholar
  114. Odom, J. M., and Singleton, R., Jr., 1993, The Sulfate-Reducing Bacteria: Contemporary Perspectives, Springer-Verlag, New York, p. 289.CrossRefGoogle Scholar
  115. Ogata, M., Arihara, K., and Yagi, T., 1981, D-Lactate dehydrogenase of Desulfovibrio vulgaris, J. Biochem. Tokyo, 89:1423–1431.PubMedGoogle Scholar
  116. Okabe, S., and Characklis, W. G., 1992, Effects of temperature and phosphorus concentrations on microbioi sulfate reduction by Desulfuricans desulfovibrio, Biotechnol. Bioengr. 39:1031–1042.CrossRefGoogle Scholar
  117. Oremland, R. S., Culbertson, C. W., and Winfrey, M. R., 1991, Methylmercury decomposition in sediments and bacterial cultures — involvement of methanogens and sulfate reducers in oxidative demethylation, Appl. Environ. Microbioi. 57:130–137.Google Scholar
  118. Oremland, R. S., Hollibaugh, J. T., and Maest, A. S. 1989, Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biochemical significance of a novel, sulfate-independent respiration, Appl. Environ. Microbioi. 55:2333–2343.Google Scholar
  119. Panchanadikar, V. V., and Kar, R. N., 1993, Precipitation of copper using Desulfovibrio sp., World J. Microbiol. Biotechnol. 9:280–281.CrossRefGoogle Scholar
  120. Parpaleix, T., Laval, J. M., Majda, M., and Bourdillon, C., 1992, Potentiometric and voltammetric investigations of H2/H+ catalysis by periplasmic hydrogenase from Desulfovibrio gigas immobilized at the electrode surface in an amphiphilic bilayer assembly, Anal. Chem. 64:641–646.PubMedCrossRefGoogle Scholar
  121. Peck, H. D., Jr., and Le Gall, J., 1994, Inorganic Microbiol. Metabolism, Methods in Enzymology, vol. 243, Academic Press, Inc., San Diego, CA, pp. 682.Google Scholar
  122. Philp, J. C., Taylor, K. J., and Christofi, N., 1991, Consequences of sulphate-reducing bacterial growth in a lab-simulated waste disposal regime, Experimentia 47:553–559.CrossRefGoogle Scholar
  123. Postgate, J. R., 1965, Recent advances in the study of the sulfate-reducing bacteria. Bacteriol Rev. 29:425–441.PubMedGoogle Scholar
  124. Postgate, J. R., 1969, Methane as a minor product of pyruvate metabolism by sulphatereducing and other bacteria, J. Gen. Microbiol. 57:293–302.PubMedCrossRefGoogle Scholar
  125. Postgate, J. R., 1984, The Sulphate-Reducing Bacteria, Cambridge, University Press, Cambridge, pp. 208.Google Scholar
  126. Radha, S., and Seenayya, G., 1992, Environmental factors affecting the bioavailability and toxicity of Cd and Zn to an anaerobic bacterium Desulfovibrio, Sci. of the Total Environ. 125:123–136.CrossRefGoogle Scholar
  127. Rao, K. K., Rosa, L., and Hall, H. O., 1976, Prolonged production of hydrogen gas by a chloroplast biocatalytic system, Biochem. Biophys. Res. Commun. 68:21–27.PubMedCrossRefGoogle Scholar
  128. Rapp, B. J., and Wall, J. D., 1987, Genetic transfer in Desulfovibrio desulfuricans, Proc. National Acad. Sciences of the USA, 8:9128–9130.CrossRefGoogle Scholar
  129. Reis, M. A. M., Almeida, J. S., Lemos, P. C., Carrondo, M. J. T., 1992, Effect of hydrogen sulfide on growth of sulfate-reducing bacteria. Biotechnol Bioengr., 40:593–600.CrossRefGoogle Scholar
  130. Riederer-Henderson, M. A., and Peck, H. D., Jr., 1986, Properties of formate dehydrogenase from Desulfovibrio gigas, Can. J. Microbiol. 32:430–435.CrossRefGoogle Scholar
  131. Roden, E. E., and Lovley, D. R., 1993, Dissimilatory FE(III) reduction by the marine microorganism Desulfuromonas acetoxidans, Appl. Environ. Microbiol. 59:734–742.PubMedGoogle Scholar
  132. Rosnes, J. T., Torsvik, T., and Lien, T., 1991, Spore-forming thermophilic sulfate-reducing bacteria isolated from the North Sea oil field waters, Appl. Environ. Microbiol. 57:2302–2307.PubMedGoogle Scholar
  133. Russell, P., 1961, Microbiological studies in relation to moist ground wood pulp, Chem. Ind. (London) 642-649.Google Scholar
  134. Sadana, J. C., and Rittenberg, D., 1964, Iron requirement for the hydrogenase of Desulfovibrio desulfuricans, Arch. Biochem. Biophys. 108:255–257.PubMedCrossRefGoogle Scholar
  135. Sako, Y., Uchida, A., and Kadota, H., 1984, Isolation and characterization of an apurinic endodeoxyribonuclease from the anaerobic thermophile Desulfotomaculum nigrificans, J. Gen. Microbiol. 130:1524–1534.Google Scholar
  136. Sato, M., Mendez, R., and Lemma, J. M., 1991, Biodegradability and toxicity in the anaerobic treatment of fish canning wastewaters, Environ. Technol. 12:669–677.CrossRefGoogle Scholar
  137. Schnell, S., and Schink, B., 1991, Anaerobic aniline degradation via redictive deamination of 4-aminobenzoyl-CoA in Desulfobacterium anilini, Arch. Microbiol. 155:183–190.CrossRefGoogle Scholar
  138. Seyedirashti, S., Wood, C., and Akagi, J. M., 1991, Induction and particial purification of bacteriophages form Desulfovibrio vulgaris (Hildenborough) and Desulfovibrio desulfuricans ATCC 13541, J. Gen. Microbiol. 137:1545–1549.PubMedCrossRefGoogle Scholar
  139. Seyedirashti, S., Wood, C., and Akagi, J. M., 1992, Molecular characterization of two bacteriophages isolated from Desulfovibrio vulgaris NCIMB 8303 (Hildenborough), J. Gen. Microbiol. 138:1393–1397.PubMedCrossRefGoogle Scholar
  140. Singleton, R., Jr., 1993, The sulfate-reducing bacteria: An overview, in: The Sulfate-Reducing Bacteria: Contempory Perspectives (J. M. Odom and R. Singleton, Jr., eds.) Springer-Verlag, Berlin, pp. 1–21CrossRefGoogle Scholar
  141. Singleton, R., Jr., Ketcham, R. B., and Campbell, L. L., 1988, Effect of calcium on plating efficiency of the sulfate-reducing bacterium Desulfovibrio vulgaris, Appl. Environ. Microbiol. 54:2318–2319.PubMedGoogle Scholar
  142. Smillie, R. H., Hunter, K., and Louitit, M., 1981, Reduction of chromium(VI) by bacterially produced hydrogen sulphide in a marine environment, Water Res. 15:1351–1354.CrossRefGoogle Scholar
  143. Stams, A. J. M., and Hansen, T. A., 1982, Oxygen labile L(+)lactate dehydrogenase activity in Desulfovibrio desulfuricans, FEMS Microbiol. Lett. 13:389–394.Google Scholar
  144. Stams, A. J. M., Kremer, D. R., Nicolay, K., Weenk, G. H., and Hansen, T. A., 1984, Pathway of propionate formation in Desulfovibrio propionicus, Arch. Microbiol. 139:167–173.CrossRefGoogle Scholar
  145. Steenkamp, D. J., and Peck, H. D., Jr., 1980, The association of hydrogenase and dithionite reductase activities with the nitrite reductase of Desulfovibrio desulfuricans, Biochem. Biophys. Res. Commun. 94:41–48.PubMedCrossRefGoogle Scholar
  146. Stille, W., and Trüper, H. G., 1984, Adenylylsulfate reductase in some new sulfater-educing bacteria. Arch. Microbiol. 137:145–150.CrossRefGoogle Scholar
  147. Sublette, K. L., and Gwozdz, K. J., 1991, An economic analysis of microbial removal of sulfur dioxide as a means of byproduct recovery from regenerable processes for flue gas desulfurization, Appl. Biochem. Biotech. 28:635–646.CrossRefGoogle Scholar
  148. Tasaki, M., Kamagata, Y., Nakamura, K., and Mikami, E., 1992, Propionate formation from alcohols or aldehydes by Desulfobulbus propionicus in the absence of sulfate, J. Ferment, and Bioengr. 73:329–331.CrossRefGoogle Scholar
  149. Tatnall, R. E., Stanton, K. M., and Ebersole, R. C., 1988, Methods for testing the presence of sulfate-reducing bacteria, in: Corrosion 88 Conference, pp. 1–34. NACE Publication Department, Houston, Texas.Google Scholar
  150. Teixeira, M., Moura, I., Fauque, G., Czechowski, M., Berlier, Y, Lespinat, P. A., Le Gall, J., Xavier, A. V., and Moura, J. J. G., 1986, Redox properties and activity studies on a nickel-containing hydrogenase isolated from a halophilic sulfate reducer Desulfovibrio salexigens, Biochimie 68:75–84.PubMedCrossRefGoogle Scholar
  151. Trinkerl, M., Breunig, A., Schauder, R., and Konig, H., 1990, Desulfovibrio termitidis sp. nov., a carbohydrate-degrading sulfate-reducing bacterium from the hindgut of a termite, Syst. and Appl. Microbiol. 13:372–377.CrossRefGoogle Scholar
  152. Trudinger, P. A., 1970, Carbon monoxide-reacting pigment from Desulfotomaculum nigrificans and its possible relevance to sulfite reduction, J. Bacteriol. 104:158–170.PubMedGoogle Scholar
  153. Tsai, H. H., Sunderland, D., Gibson, R. G., Hart, C. A., and Rhodes, J. M., 1992, A novel mucin sulphatase from human faeces: its identification, purification and characterization, Clin. Sci. 82:447–454.PubMedGoogle Scholar
  154. Tsjui, K., and Yagi, T., 1980, Significance of hydrogen burst from growing cultures of Desulfovibrio vulgaris Miyazaki, and the role of hydrogenase and Cytochrome c3 in energy production system, Arch. Microbiol. 125:35–42.CrossRefGoogle Scholar
  155. Turner, N., Barata, B., Bray, R. C., Deistung, J., Le Gall, J., and Moura, J. J. G., 1987, The molybdenum iron-sulfur protein from Desulfovibrio gigas as a form of aldehyde oxidase, Biochem. J. 243:755–761.PubMedGoogle Scholar
  156. Turner, D. L., Santos, H., Fareleira, P., Pacheco, I., Le Gall, J., and Xavier, A. V., 1992, Structure determination of a novel cyclic phosphocompound isolated from Desulfovibrio desulfuricans, Biochem, J. 285:387–390.Google Scholar
  157. Updegraff, D. M., and Wren, G. B., 1954, The release of oil from petroleum-bearing materials by sulfate-reducing bacteria, Appl. Microbiol. 2:309–322.PubMedGoogle Scholar
  158. Vainshtein, M., Hippe, H., Kroppenstedt, R. M., 1992, Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria. Systematic and Appl Microbiol. 15:554–566.CrossRefGoogle Scholar
  159. Vanbeeumen, J. J., Vandriessche, G., Liu, M. Y., and Le Gall, J., 1991, The primary structure of rubrerythrin, a protein with inorganic pyrophosphatase activity from Desulfovibrio vulgaris — comparison with hemerythrin and rubredoxin, J. Biol. Chem. 266:20645–20653.Google Scholar
  160. Voroshilov, A. A., and Dianova, E. V., 1950, Concerning the bacterial oxidation of petroleum and its migration in connate waters, Mikrobiologiya 19:203–210.Google Scholar
  161. Vosjan, J. H., and van der Hoek, G. J., 1972, A continuous culture of Desulfovibrio on a medium containing mercury and copper ions, Netherlands J. Sea Res. 5:440–444.CrossRefGoogle Scholar
  162. Wasay, S., and Das, H. A., 1993, Immobilization of chromium and mercury from industrial wastes. J. of Environ. Sci. and Health Part A Environ. Sci. and Engr. 28:285–297.Google Scholar
  163. Ware, D. A. and Postgate, J. R., 1971, Physiological and chemical properties of a reductantactivated inorganic pyrophosphatase from Desulfovibrio desulfuricans, J. Gen microbiol. 67:145–160.PubMedCrossRefGoogle Scholar
  164. Weimer, P. J., and Cooling, F. B., 1991, Automated Screening of inhibitors of bacterial dissimilatory sulfate reduction, Appl. Microbiol. Biotechnol. 35:297–300.CrossRefGoogle Scholar
  165. Werkman, D. H., 1929, Bacteriological studies on sulfide spoilage of canned vegetables. Iowa State Col. Agr. Exp. Sta. Res. Bull. 117:161–180.Google Scholar
  166. Werkman, C. H., and Weaver, H. J., 1927, Studies in the bacteriology of sulfur stinker spoilage of canned sweet corn, Iowa State Col. J. Sci. 2:57–67.Google Scholar
  167. Widdel, F., 1992, The genus Thermodesulfobacterium, in: The Prokaryotes, Vol. IV. (A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer, eds.) Springer-Verlag, Berlin, pp. 3390–3392.Google Scholar
  168. Widdel, F., and Pfennig, N., 1984, Dissimmilatory sulfate-or sulfur-reducing bacteria, in: Bergey’s Manual of Systematic Bacteriology (N. R. Krieg and J. G. Holt, eds.) Williams & Wilkins, Baltimore, pp. 663–679.Google Scholar
  169. Widdel, F., and Bak, F., 1992, Gram-negative mesophilic sulfate-reducing bacteria, in: The Prokaryotes, Vol. IV. (A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer, eds.) Springer-Verlag, Berlin, pp. 3352–3378.Google Scholar
  170. Widdel, F., and Pfennig, N., 1992, The genus Desulfuromonas and other Gram-negative sulfur-reducing eubacteria, in: The Prokaryotes, Vol. IV. (A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer, eds.) Springer-Verlag, Berlin, pp. 3380–3389.Google Scholar
  171. Widdel, F., and Hansen, T. A., 1992, The dissimilatory sulfate-and sulfur-reducing bacteria, in: The Prokaryotes, Vol I (A. Ballows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer, eds.) Springer-Verlag, Berlin, pp. 583–624.Google Scholar
  172. Yagi, T., 1969, Formate: cytochrome oxidoreductase of Desulfovibrio vulgaris, J. Biochem. Tokyo, 66:473–478.PubMedGoogle Scholar
  173. Yagi, T., 1979, Preparation of hydrogenase immobilized in polyvinyl alcohol film, J. Appl. Biochem. 1:448–454.Google Scholar
  174. Yagi, T., 1970, Solubilization, purification and properties of particulate hydrogenase from Desulfovibrio vulgaris, J. Biochem. 68:649–657.PubMedGoogle Scholar
  175. Yagi, X, Honya, M., and Tamiya, N., 1968, Purification and properties of hydrogenases of different origins, Biochim. Biophys. Acta 153:699–705.PubMedCrossRefGoogle Scholar
  176. Yamaguchi, M., Hake, J., Tanimoto, Y, Naritomi, X, Okamura, K., and Minami, K., 1991, Enzyme activity for monitoring the stability in a thermophilic anaerobic digestion of wastewater containing methanol, J. Fermentation and Bioengineering 71:264–269.CrossRefGoogle Scholar
  177. Yates, M. G., 1969, A nonspecific adenine nucleotide deaminase from Desulfovibrio desulfuricans, Biochim. Biophys. Acta 171:299–310.PubMedCrossRefGoogle Scholar
  178. Zehr, J. P., and Oremland, R. S., 1987, Reduction of selenate to selenide by sulfaterespiring bacteria: experiments with cell suspensions and estuary sediments, Appl. Environ. Microbiol. 53:1365–1369.PubMedGoogle Scholar
  179. Zellner, G., Kneifel, H., and Winter, J., 1990, Oxidation of benzaldehydes to benzoic acid derivatives by three Desulfovibrio strains, Appl. Environ. Microbiol. 56:2228–2233.PubMedGoogle Scholar
  180. Zellner, G., Messner, P., Kneifel, H., and Winter, J., 1989, Desulfovibrio simplex spec, nov., a new sulfate-reducing bacterium from a sour whey digester, Arch. Microbiol. 152:329–334.CrossRefGoogle Scholar
  181. Ziomek, E., and Williams, R. E., 1989, Modification of lignins by growing cells of the sulfate-reducing anaerobe Desulfovibrio desulfuricans, Appl. Environ. Microbiol. 55:2262–2266.PubMedGoogle Scholar
  182. Ziomek, E., Martin, W. G., and Williams, R. E., 1984, Immobilization of isolated and cellular hydrogenase of D. desulfuricans in radiation-polymerized polyacrylamides, Appl. Biochem. Biotechnol. 9:57–64.PubMedCrossRefGoogle Scholar
  183. ZoBell, C. E., 1957, Ecology of sulfate-reducing bacteria, in: Sulfate-Reducing Bacteria-Their Relation to the Secondary Recovery of Oil, Science Symposium, St. Bonaventure University, pp. 1-24.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Larry L. Barton
    • 1
  • Francisco A. Tomei
    • 2
  1. 1.Department of BiologyUniversity of New MexicoAlbuquerqueUSA
  2. 2.Army Environmental Policy InstituteChampaignUSA

Personalised recommendations