Model Calculations of H-Like Recombination Schemes

  • L. Bonnet
Part of the NATO ASI Series book series (NSSB, volume 327)


Since the invention of the first optical laser by Maiman in 1960, physicists all over the world have been trying to develop an X-ray laser. Many applications of such short wavelength lasers could exist. Chief among them is biology: first, the observation of wet living cells could be achieved providing the laser wavelength is in the famous water-window, that is to say between 23.2 Å and 43.7 Å; secondly, the creation of holograms of biological objects could be very useful to vizualize three dimensional structures of proteins, DNA,... Another area is micro-electronics: contact and projection lithography technics could benefit from an enhancement of contrast and resolution by using an appropriate X-ray laser. Material science, atomic physics,... seem also to offer potential applications for such tools1.


Carbon Fiber Population Inversion Principal Quantum Number Dielectronic Recombination Plasma Kinetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. London et al. In Applications of X-ray Lasers, San Francisco, California (1992).Google Scholar
  2. 2.
    R.C. Elton. Extension of 3p→3s ion lasers into the vacuum ultraviolet region. Appl. Optics 14, 97 (1975).CrossRefGoogle Scholar
  3. 3.
    A. Carillon et al. Saturated and near-diffraction-limited operation of an xuv laser at 23.6 nm. Phys. Rev. Lett 68, 2917 (1991).CrossRefGoogle Scholar
  4. 4.
    D.L. Matthews et al. Demonstration of a soft x-ray amplifier. Phys. Rev. Lett. 54, 110 (1985).CrossRefGoogle Scholar
  5. 5.
    LI. Gudzenko and L.A. Shelepin. Sov. Phys. Dokl. 10, 147 (1965).Google Scholar
  6. 6.
    T. Boehly et al. Demonstration of a narrow-divergence x-ray laser in neonlike titanium. Phys. Rev. A 42, 6962 (1990).CrossRefGoogle Scholar
  7. 7.
    C. Chenais-Popovics et al. Laser amplification at 18.2 nm in recombining plasma from a laser-irradiated carbon fiber. Phys. Rev. Lett. 59, 2161 (1987).CrossRefGoogle Scholar
  8. 8.
    G.J. Pert and M.H. Key. Detailed simulation of recombination xuv laser experiments. Appl. Phys. B 50, 307 (1990).CrossRefGoogle Scholar
  9. 9.
    R. London. Beam optics of exploding foil plasma x-ray lasers. Phys. Fluids 31, 184 (1988).CrossRefGoogle Scholar
  10. 10.
    W. Eissner and M.J. Seaton. Computer programs for the calculation of electron-atom collision cross sections. J. Phys B 5, 2187 (1972).Google Scholar
  11. 11.
    W. Eissner et al. Techniques for the calculation of atomic structures and radiative data including relativistic corrections. Comput. Phys. Commun. 8, 270 (1974).CrossRefGoogle Scholar
  12. 12.
    H.E. Saraph. Fine structure cross sections from reactance matrix. Comput. Phys. Commun. 3, 256 (1972).CrossRefGoogle Scholar
  13. 13.
    S. Jacquemot and A. Decoster. Z-scaling of collisional ne-like x-ray lasers using exploding foils: refraction effects. Laser and Particle Beams 9, 517 (1991).CrossRefGoogle Scholar
  14. 14.
    Ya.B. Zel’dovich and Yu.P Raizer. Physics of Shock Waves and high-Temperature Hydrodynamical Phenomena, ed. by W.D. Hayes and R.F. Probstein, Academic Press, New York (1966).Google Scholar
  15. 15.
    J.C. Gauthier et al. Implicit coupling of ionisation dynamics and electron energy balance in laser target simulations. J. Phys D: Appl. Phys. 16, 321 (1983).CrossRefGoogle Scholar
  16. 16.
    G. Zimmerman and R.M. More. Pressure ionization in laser-fusion target simulation. J.Q.R.S.T. 23, 517 (1980).Google Scholar
  17. 17.
    S. Bayle. PhD. Université Paris XI, 1991.Google Scholar
  18. 18.
    S. Jacquemot. Atomic Physics data base: FICATO-FICSPI, used in the collisional-radiative model LASIX. Rapport CEA-R-5463 (1988).Google Scholar
  19. 19.
    A.I. Shestakov and D.C. Eder. Escape probabilities in a cylindrically expanding medium. J.Q.R.S.T. 42, 483 (1990).Google Scholar
  20. 20.
    G. Massacrier. PhD. Université Paris VI (1988).Google Scholar
  21. 21.
    R.M. More. Electronic energy levels in dense plasmas. J.Q.R.S.T. 27, 345 (1982).Google Scholar
  22. 22.
    P. C. Kepple and H. R. Griem. in N.R.L. Memoranum Report, 3634 (1978).Google Scholar
  23. 23.
    C. Stehlé. In Radiative Properties of Hot Dense Matter, Sarasota (Florida) (1990).Google Scholar
  24. 24.
    D.C. Eder. Hydrogenlike magnesium x-ray laser design. Phys. Fluids B 2, 3086 (1990).CrossRefGoogle Scholar
  25. 25.
    M.H. Key et al. Modelling study of recombination lasers. In Inst. Phys. Conf. Ser. No 116, Int. Colloquium on X-ray Lasers, York (1990).Google Scholar
  26. 26.
    N. Tragin et al. Investigation of the effect of space integration on the apparent gain in CVI Hα recombination lasers. in Central Laser Facility, Annual Report (1991).Google Scholar
  27. 27.
    N. Tragin et al. Modelling high gain xuv laser amplifiers. Journal of Modern Optics 37, 435 (1990).CrossRefGoogle Scholar
  28. 28.
    W. Brunner et al. Gain and radiation trapping in laser-produced plasmas. Laser and Particle Beams 6, 277 (1988).CrossRefGoogle Scholar
  29. 29.
    W. Brunner et al. X-ray gain at 18.2 nm (CVI Balmer α) in laser-produced recombining carbon plasmas. Laser and Particle Beams 6, 621 (1988).CrossRefGoogle Scholar
  30. 30.
    D.C. Eder et al. Optical-field-ionized plasma x-ray lasers. Phys. Rev. A 45, 6761 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • L. Bonnet
    • 1
  1. 1.Centre d’Etudes de Limeil-ValentonCedexFrance

Personalised recommendations