Skip to main content

Density Functional and Non-Equilibrium Methods for Unusual States of Matter Produced Using Short-Pulse Lasers

  • Chapter
Laser Interactions with Atoms, Solids and Plasmas

Part of the book series: NATO ASI Series ((NSSB,volume 327))

Abstract

Density functional theory (DFT)1–3 has proved itself as a very effective first principles calculational method for describing the electronic and structural properties of atoms, solids, liquids and plasmas. DFT is, of course, a method for equilibrium ensembles. However, using the output of DFT calculations as the input to non-equilibrium field-theory techniques, we obtain an extremely versatile theoretical framework which is not just a formal method, but an effective calculational method for confronting experimental results via first principles calculations. Just such a versatile and powerful tool is needed to understand the new states of matter that are being produced by the use of short-pulse lasers to compress, heat, ionize and manipulate matter into very unusual non-equilibrium situations. Such non-equilibrium situations are experimentally monitored using time-resolved probes which provide information on time dependent populations, optical and carrier transport coefficients, linear and non-linear susceptibilities, etc. It is clear from the talks by Profs. Mike Downer, Tom Hall, and von der Linde, that the time evolution of such systems during energy deposition by the laser may involve the transformation of the solid to other solid phases, to a liquid and finally to a plasma. Hence the first principles method must have the capability of spanning such a variety of regimes of condensed matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Hohenberg and W. Kohn, Phys. Rev B 136, 864 (1964);

    Article  MathSciNet  Google Scholar 

  2. W. Kohn and L.J. Sham, Phys. Rev. A 140, 1133 (1965). See S. Lindqvist and N. March, ed., Theory of the Inhomogeneous Electron Gas Plenum, New York (1983).

    MathSciNet  Google Scholar 

  3. N.D. Mermin, Phys. Rev. A 137, 1141 (1965).

    MathSciNet  Google Scholar 

  4. M.W.C. Dharma-wardana and François Perrot, Phys. Rev. A 26, 2096 (1982), also, see the reviews in Strongly Coupled Plasma Physics, F.J. Rogers and H.E. DeWitt, eds., Plenum, New York (1987).

    Article  Google Scholar 

  5. For a review of the Keldysh method see J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986); see D.N. Zubarev, Non-Equilibrium Statistical Thermodynamics, P.J. Shepherd Trs., Consultants bureau, New York (1974); H. Umezawa et. al. Thermofield Dynamics and Condensed States, North-Holland (1982). I am indebted to Dr. Zhen Ye for clarifications regarding some aspects of thermofield dynamics.

    Article  Google Scholar 

  6. F. Perrot and M.W.C. Dharma-wardana, Phys. Rev. A 30, 2619 (1984), also F. Perrot, Y. Furutani and M.W.C. Dharma-wardana, Phys. Rev. A 41, 1096 (1990).

    Article  Google Scholar 

  7. F. Grimaldi, A. Grimaldi-Lecourt and M.W.C. Dharma-wardana, Phys. Rev. A 32, 1063 (1985).

    Article  Google Scholar 

  8. F. Perrot and M.W.C. Dharma-wardana, Phys. Rev. A 36, 238 (1987).

    Article  Google Scholar 

  9. F. Nadin, G. Jacucci and M.W.C. Dharma-wardana, Phys. Rev. A 37, 1025 (1988), and reviews in ref. 3.

    Article  Google Scholar 

  10. See D.H. Reitze, H. Ahn and M.C. Downer, Phys. Rev. B 45, 2677 (1992).

    Article  Google Scholar 

  11. N.W. Ashcroft, Il Nuovo Cimento 12D, 597 (1990), also Z. Badirkhan et. al. ibid, 619.

    Article  Google Scholar 

  12. G. Galli, R. Martin, R. Car and M. Parrinello, Phys. Rev. Lett. 63, 988 (1989).

    Article  Google Scholar 

  13. I. Stich, R. Car and M. Parrinello, ibid, 63, 2240 (1989).

    Google Scholar 

  14. M.W.C. Dharma-wardana and F. Perrot, Phys. Rev. Lett, 65, 76 (1990), Modern Physics Letters B 5, 161 (1991).

    Article  Google Scholar 

  15. See J.-P. Hansen and I. MacDonald, Theory of Simple Liquids, Academic, London (1986).

    Google Scholar 

  16. P.S. Salmon, J. Phys. F 18, 2345 (1988).

    Article  Google Scholar 

  17. F.A. Stillinger and T.A. Weber, Phys. Rev. B 31, 5265 (1985).

    Article  Google Scholar 

  18. Y. Waseda, The Structure of Non-Crystalline Materials, McGraw-Hill, NY, 1980.

    Google Scholar 

  19. G.I. Kerley, Report No. LA-8833-M, Los Alamos (1981); see Professor Hall’s lectures regarding Hugoniot theory.

    Google Scholar 

  20. B.K. Godwal, A. Ng, L. DaSilva, Y.T. Lee and D.A. Liberman, Phys. Rev. A 40, 4521 (1989), also T.A. Hall et. al. Phys. Rev. Lett. 60, 2034 (1988).

    Article  Google Scholar 

  21. G.D. Mahan, Many-Particle Physics, Plenum, NY (1990).

    Book  Google Scholar 

  22. For DFT calculations of the X-ray edge at T = 0, see C.-O. Almbladh and U. von Barth, Phys. Rev. B 13, 3307 (1976).

    Google Scholar 

  23. M.W.C. Dharma-wardana, Phys. Rev. Lett. 66, 197 (1991).

    Article  Google Scholar 

  24. Sh. M. Kogan, Sov. Phys. Solid State 4, 1813 (1963).

    Google Scholar 

  25. Y.T. Lee and R.M. More, Phys. Fluids 27, 1973 (1984).

    Google Scholar 

  26. G.A. Rinker, Phys. Rev. B 31, 4207 (1985).

    Article  Google Scholar 

  27. F. Perrot and M.W.C. Dharma-wardana, Phys. Rev. A 36, 238 (1987).

    Article  Google Scholar 

  28. The calculation for the equilibrium case has been given by G.D. Mahan, J. Phys. Chem. Solids 31, 1477 (1970).

    Google Scholar 

  29. M.W.C. Dharma-wardana and F. Perrot, Physics Letters A 163, 223 (1992).

    Article  Google Scholar 

  30. We are indebted to Peter Cellier and Andrew Ng of the University of British Columbia for these comparisons.

    Google Scholar 

  31. H.M. Milchberg, R.R. Freeman, S.C. Davey and R.M. More, Phys. Rev. Lett. 61, 2364 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dharma-wardana, C. (1994). Density Functional and Non-Equilibrium Methods for Unusual States of Matter Produced Using Short-Pulse Lasers. In: More, R.M. (eds) Laser Interactions with Atoms, Solids and Plasmas. NATO ASI Series, vol 327. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1576-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1576-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1578-8

  • Online ISBN: 978-1-4899-1576-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics