Skip to main content

Properties of Condensed Matter Under Planetary Interior Conditions Measured by Femtosecond Spectroscopy

  • Chapter
Laser Interactions with Atoms, Solids and Plasmas

Part of the book series: NATO ASI Series ((NSSB,volume 327))

  • 255 Accesses

Abstract

Imagine descending a deep mine shaft on a science fiction voyage to the center of the earth. In preparation for this voyage you pack two scientific measuring instruments: 1) an optical polishing apparatus, which allows you to prepare optically flat, mirror surfaces on samples of any materials which you encounter during the descent, and 2) a variable angle spectro-ellipsometer, which allows you to characterize completely the optical reflectance properties of the polished samples over as wide a wavelength range as desired. As you begin your descent, temperature and pressure begin to rise. Before long, the basic properties of surrounding materials begin to change. Crystals undergo plastic deformation, and phase transformations take place. Materials which were crystalline and insulating on the earth’s surface become fluid and conducting at elevated temperature and pressure. Eventually, upon arriving at the lower mantle and upper core, temperature will reach approximately 5000 K (the temperature of the sun’s surface) and pressure will approach 1 Mbar. Now imagine that, at this point, you take out your polishing apparatus and begin preparing mirror surfaces on surrounding materials, somehow maintaining the Mbar pressure on them (remember, this is a science fiction story). Then you begin performing extensive reflectance spectroscopy measurements on the hot pressurized surfaces, which your theoretical colleagues, waiting in cool, atmospheric pressure offices back home, are anxious to test against their latest computer model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aithal, S., Lavigne, P., Pépin, H., Johnston, T.W., 1987, Superthermal electron production from hot underdense plasmas, Phys. Fluids 30: 3825.

    Article  Google Scholar 

  • Allee, D. R., Pehoushek, J. D., and Pease, R. F. W., 1988, Novel Monte Carlo simulation of space-charge-induced energy broadening in laser irradiated cathodes, J. Vac. Sci. Technol. B 6: 1989.

    Article  Google Scholar 

  • Anisimov, S.I., Kapeliovich, B.L., Perel’man, T.L., 1974, Electron emission from metal surfaces exposed to ultrashort laser pulses, Sov. Phys. JETP 39: 375.

    Google Scholar 

  • Azzam, R. M., and Bashara, N. M., 1977, “Ellipsometry and Polarized Light,” North-Holland, Amsterdam.

    Google Scholar 

  • Bloembergen, N., 1992, First light on fluid carbon, Nature 356: 110.

    Article  Google Scholar 

  • Boersch, 1954, Experimentelle bestimmung der energieverteilung in thermisch ausgelösten electronenstrahlen, Z Phys. 139:

    Google Scholar 

  • Bokor, J., 1989, Ultrafast dynamics at semiconductor and metal surfaces, Science 246: 1130.

    Article  Google Scholar 

  • Bundy, F. P., 1980, The P,T phase and reaction diagram for elemental carbon, J. Geophys. Res. 85: 6930.

    Article  Google Scholar 

  • Bundy, F. P., 1989, Pressure-temperature phase diagram of elemental carbon, Physica A (Amsterdam) 156:169.

    Article  Google Scholar 

  • Dharma-wardana, M. W. C. and Perrot, F., 1990, Density-functional study of C., Si, and Ge metallic liquids, Phys. Rev. Lett. 65:76.

    Article  Google Scholar 

  • Dickey, J. S., Bassett, W. A., Bird, J. M., and Weathers, M. S., 1983, Liquid carbon in the lower mantle? Geology 11:219.

    Article  Google Scholar 

  • Downer, M. C., Fork, R. L., and Shank, C. V., 1985, Femtosecond imaging of melting and evaporation at a photoexcited silicon surface, J. Opt. Soc. Am. B 2: 595.

    Article  Google Scholar 

  • Fedosejevs, R., Ottmann, R., Sigel, R., Kuhnle, G., Szatmari, S., and Schafer, F. P., 1990, Absorption of femtosecond laser pulses in high-density plasmas, Phys. Rev. Lett. 64: 1250.

    Article  Google Scholar 

  • Fortov, V.E., Bushman, A.V., Filimonov, A.S., Kvitov, S.V., Kulish, M.I., Lebedev, M.E., Polischuk, A.Ya., Ternovoi, V. Ya., 1992, Optical properties of dense plasma in shock and rarefaction waves, in “Shock Compression of Condensed Matter,” S.C. Schmidt, R.D. Dick, J.W. Forbes, D.G. Tasker, eds., Elsevier Science Publishers, p. 745.

    Google Scholar 

  • Fortov, V.E., Kostin, V.V., Eliezer, S., 1991, Spallation of metals under laser irradiation, J. Appl. Phys. 70:4525p.

    Google Scholar 

  • Fujimoto, J. G., Liu, J. M., Ippen, E. P., and Bloembergen, N., 1984, Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures, Phys. Rev. Lett. 53: 1837.

    Article  Google Scholar 

  • Galli, G., Martin, R. M., Car, R., and Parrinello, M., 1989, Carbon: the nature of the liquid state, Phys. Rev. Lett. 42: 7470.

    Google Scholar 

  • Gathers, G. R., Shaner, J. W., and Young, D. A., 1974, High temperature carbon equation of state, Lawrence Livermore Laboratory Report UCRL-51644 (unpublished).

    Book  Google Scholar 

  • Girardeau-Montaut, C. and Girardeau-Montaut, J. P., 1991, Space-charge effect on the energy spectrum of photoelectrons produced by high-intensity short-duration laser pulses on a metal, Phys. Rev. A 44:1409.

    Article  Google Scholar 

  • Heremans, J., Olk, C. H., Eesley, G. L., Steinbeck, J., and Dresselhaus, G., 1988, Observation of metallic conductivity in liquid carbon, Phys. Rev. Lett. 60: 452.

    Article  Google Scholar 

  • Ichimaru, S., Plasma Physics: An Introduction to Statistical Physics of Charged Particles (Menlo Park, Benjamin/Cummings Publishing Co., Inc., 1986).

    Google Scholar 

  • Kato, S., Kawakami, R., and Mima, K., 1991, Nonlinear inverse bremsstrahlung in solid-density plasmas, Phys. Rev. A 43: 5560.

    Article  Google Scholar 

  • Kieffer, J. C., Audebert, P., Chaker, M. Matte, J. P., Pepin, H., Johnston, T. W., Maine, P., Meyerhofer, D. Delettrez, J. Strickland, D., Bado, P., and Mourou, G., 1989, Short-pulse laser absorption in very steep plasma density gradients, Phys. Rev. Lett. 62: 760.

    Article  Google Scholar 

  • Kmetec, J. D., Gordonm, C. L., Macklin, J. J., Lemoff, B. E., Brown, G. S., and Harris, S. E., 1992, MeV x-ray generation with a femtosecond laser, Phys. Rev. Lett. 68: 1527.

    Article  Google Scholar 

  • Landen, O.L., and Alley, W.E., 1992, Dynamics of picosecond-laser-pulse plasmas determined from the spectral shifts of reflected probe pulses, Phys. Rev. A 46: 5089.

    Article  Google Scholar 

  • Landen, O.L., Stearns, D. G., and Campbell, E.M., 1989, Measurement of the expansion of picosecond laser- produced plasmas using resonance absorption profile spectroscopy, Phys. Rev. Lett. 63: 1475.

    Article  Google Scholar 

  • Lebedev, S. V. and Savvatimskii, A. I., 1986, Electrical resistivity of graphite in a broad region of the condensed state, High Temperature 24: 671.

    Google Scholar 

  • Li, K. D., and Fauchet, P. M., 1987, Drude parameters of liquid silicon at the melting temperature, Appl. Phys. Lett. 51: 1747.

    Article  Google Scholar 

  • Liu, X. and Umstadter, D., 1992, Competition between ponderomotive and thermal forces in short-scale- length laser plasmas, Phys. Rev. Lett. 69:1935.

    Article  Google Scholar 

  • Malvezzi, A. M., Bloembergen, N., and Huang, C. Y., 1986, Time-resolved picosecond optical measurements of laser-excited graphite, Phys. Rev. Lett. 57: 146.

    Article  Google Scholar 

  • Milchberg, H. M., Freeman, R. R., Davey, S. C., and More, R. M., 1988, Resistivity of a simple metal from room temperature to 106 K, Phys. Rev. Lett. 61: 2364.

    Article  Google Scholar 

  • Milchberg, H. M. and Freeman, R. R., 1989, Light absorption in ultrashort scale length plasmas, J. Opt. Soc. Am.B 6: 1351.

    Article  Google Scholar 

  • Milchberg, H. M. and Freeman, R. R., 1990, Expansion-induced Doppler shifts from ultrashort-pulse laser-produced plasmas, Phys. Rev. A 41: 2211.

    Article  Google Scholar 

  • More, R. M., Warren, K. H., Young, D. A., and Zimmerman, G. B., 1988, A new quotidian equation of state (QEOS) for hot dense matter, Phys. Fluids 31: 3059.

    Article  MATH  Google Scholar 

  • Mott, N. F., 1974, “Metal-Insulator Transitions,” Taylor and Francis, London.

    Google Scholar 

  • Murnane, M. M., Kapteyn, H. C., Rosen, M. D., Falcone, R. W., 1991, Ultrafast x-ray pulses from laser-produced plasmas, Science 251: 531.

    Article  Google Scholar 

  • Plummer, E.W., and Eberhardt, W., 1982, Angle-resolved photoemission as a tool for the study of surfaces, Adv. Chem. Phys. 49: 533.

    Article  Google Scholar 

  • Prybyla, J. A., Tom, H. W. K., Aumiller, G. D., 1992, Femtosecond time-resolved surface reaction: desorption of CO from Cu(111) in < 325 fsec, Phys. Rev. Lett. 68: 503.

    Article  Google Scholar 

  • Reitze, D. H., Ahn, H., and Downer, M. C., 1992, Optical properties of liquid carbon measured by femtosecond spectroscopy, Phys. Rev. B 45: 2677.

    Article  Google Scholar 

  • Riffe, D. M., Wang, X. Y., Downer, M. C., Fisher, D. L., Tajima, T., Erskine, J. L., and More, R. M., 1993, Femtosecond thermionic emission from metals in the space-charge limited regime, J. Opt. Soc. Am. B (submitted for publication).

    Google Scholar 

  • Rosen, M. D., 1990, Analysis of electron heat transport in femtosecond laser-plasma interactions with layered solid targets and with thin foils, in “Radiative Properties of Hot Dense Matter,” W. Goldstein, C. Hooper, J. Gauthier, J. Seely, and R. Lee, eds., World Scientific, Singapore.

    Google Scholar 

  • Ross, M., 1981, The ice layer in Uranus and Neptune — diamonds in the sky? Nature 292: 435.

    Article  Google Scholar 

  • Seibert, K., Cho, G. C., Kutt, W., Kurz, H., Reitze, D. H., Dadap, J. I., Ahn, H., Downer, M. C., and Malvezzi, A. M., 1990, Femtosecond carrier dynamics in graphite, Phys. Rev. B 42: 2842.

    Article  Google Scholar 

  • Shaner, J. W., 1987, Equation of state and electrical conductivity of carbon pulse heated to 6000 K, Bull. Am. Phys. Soc. 32:607.

    Google Scholar 

  • Shvarev, K. M., Baum, B. A., and Gel’d, P. V., 1975, Optical properties of liquid silicon, Sov. Phys. Solid State 16:2111.

    Google Scholar 

  • Spitzer, L., Jr., 1962, “Physics of Fully Ionized Gases,” Wiley, New York.

    Google Scholar 

  • Squier, J., Salin, F., Mourou, G., and Harter, D., 1991, 100-fs pulse generation and amplification in Ti: Al2O3, Opt. Lett. 16:324.

    Article  Google Scholar 

  • Stampfli, P. and Bennemann, K. H., 1992, Dynamical theory of the laser-induced lattice instability of silicon, Phys. Rev. B 46: 10686.

    Article  Google Scholar 

  • Steinbeck, J., Braunstein, G., Speck, J., Dresselhaus, M. S., Huang, C. Y., Malvezzi, A. M., and Bloembergen, N., 1987, Analysis of picosecond pulsed laser melted graphite, in “Beam-Solid Interactions and Transient Processes,” M. O. Thompson, S. T. Picraux, and J. S. Williams, eds., Materials Research Society, Pittsburgh.

    Google Scholar 

  • Tajima, T., 1989, “Computational Plasma Physics,” Addison-Wesley, New York.

    Google Scholar 

  • Teubner, U., Bergmann, J., van Wonterghem, B., Schäfer, and Sauerbrey, R., Angle-dependent x-ray emission and resonance absorption in a laser-produced plasma generated by a high intensity ultrashort pulse, 1993, Phys. Rev. Lett. 70:794.

    Article  Google Scholar 

  • Thomson, J. J., Kruer, W. L., Langdon, A. B., Max, C. E., and Mead, W. C., 1978, Theoretical interpretation of angle- and polarization-dependent laser light absorption measurements, Phys. Fluids 21: 707.

    Article  Google Scholar 

  • Tom, H. W. K., Aumiller, G. D., Brito-Cruz, C. H., 1988, Time-resolved study of laser-induced disorder of Si surfaces, Phys. Rev. Lett. 60: 1438.

    Article  Google Scholar 

  • Valeo, E. J. and Estabrook, K. G., 1975, Stability of the critical surface in irradiated plasmas, Phys. Rev. Lett.34: 1008.

    Article  Google Scholar 

  • van Leeuwen, J. M. J. and Jansen, G. H., 1983, Statistical limitations in electron beam lithography, Optik 65: 179.

    Google Scholar 

  • Venkatesan, T., Jacobson, D. C., Gibson, J. M., Elman, B. S., Braunstein, G., Dresselhaus, M. S., and Dresselhaus, G., 1984, Measurement of thermodynamic parameters of graphite by pulsed-laser melting and ion channeling, Phys. Rev. Lett. 53: 360.

    Article  Google Scholar 

  • von der Linde, D., Schulz, H., Engers, T., and Schuler, H., 1992, Second harmonic generation in plasmas produced by intense femtosecond laser pulses,” IEEE J. Quant. Electron. 28: 2388.

    Article  Google Scholar 

  • Vu, B.-T.V., Landen, O.L., and Szoke, A., 1992, Time-resolved backside optical probing of picosecond laser-produced plasma in solid materials, Phys. Rev. E (to be published).

    Google Scholar 

  • Wang, X. Y. and Downer, M. C., 1992, Femtosecond time-resolved reflectivity of hydrodynamically expanding metal surfaces, Opt. Lett. 17: 1450.

    Article  Google Scholar 

  • Weisheit, J. C., 1988, Atomic excitation in dense plasmas, Adv. At. Mol. Phys. 25: 101.

    Article  Google Scholar 

  • Wilks, S. C., Kruer, W. L., Tabak, M., Langdon, A. B., 1992, Absorption of ultra-intense laser pulses, Phys. Rev. Lett. 69: 1383.

    Article  Google Scholar 

  • Wood, W. M., Focht, G., and Downer, M. C., 1988, Tight focusing and blue shifting of millijoule femtosecond pulses from a conical axicon amplifier, Opt. Lett. 13: 984.

    Article  Google Scholar 

  • Zeldovich, Y. B. and Raizer, Y.P., 1966, “Physics of Shock Waves and High Temperature Hydrodynamic Phenomena,” Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Downer, M.C., Ahn, H., Reitze, D.H., Riffe, D.M., Wang, X.Y. (1994). Properties of Condensed Matter Under Planetary Interior Conditions Measured by Femtosecond Spectroscopy. In: More, R.M. (eds) Laser Interactions with Atoms, Solids and Plasmas. NATO ASI Series, vol 327. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1576-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1576-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1578-8

  • Online ISBN: 978-1-4899-1576-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics