Theories with conventional superstring spectra can be generalized by allowing non-vanishing vacuum expectation values (vevs) for all the fields in the low energy supergravity, rather than for only the metric tensor. The vevs are given by classical solutions of the supergravity field equations. These solutions can be elementary in that they carry only Noether charge, or solitons which have topological charge. The bosonic supergravity fields, apart from the metric, are described by d-form potentials, which fall into two categories: they are either NS-NS or RR, the latter occurring only in Type II superstrings. These two types are distinguished by the d-forms representing massless states having their origin in the Neveu-Schwarz/Neveu-Schwarz or the Ramond/Ramond sector of the string theory.


Sigma Model Target Space Heterotic String Conformal Field Theory Duality Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.B. Green, J.H. Schwarz and E. Witten, Superstring theory, Vol. 1&2, Cambridge University Press, 1988.Google Scholar
  2. 2.
    A. Dabholkar, G. Gibbons, J.A. Harvey and F. Ruiz Ruiz, Nucl. Phys. B340 33 (1990).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    M. J. Duff, R. Khuri, and J.X. Lu, String Solitons, hep-th/9412184.Google Scholar
  4. 4.
    A. Strominger, Nucl. Phys. B274 253 (1986).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    C. Callan, J.A. Harvey and A. Strominger, Nucl. Phys. B359 611 (1991)MathSciNetADSCrossRefGoogle Scholar
  6. 5.
    C. Callan, J.A. Harvey and A. Strominger, Nucl. Phys. B367 60 (1991).MathSciNetADSCrossRefGoogle Scholar
  7. 6.
    C. Hull and P. Townsend, Nucl. Phys. B438 109 (1995), hep-th/9410167MathSciNetADSCrossRefGoogle Scholar
  8. C. Hull and P. Townsend, Nucl. Phys. B451 525 (1995), hep-th/9505073.MathSciNetADSCrossRefGoogle Scholar
  9. 7.
    J. Polchinski, Dirichlet-Branes and Ramond-Ramond Charges, hep-th/9510017.Google Scholar
  10. 8.
    P. Townsend, D-branes from M-branes, hep-th/9512062.Google Scholar
  11. 9.
    A. Sevrin, W. Troost, and A. Van Proyen, Phys. Lett. B208, (1988) 447.ADSGoogle Scholar
  12. 10.
    L. Dolan and S. Horvath, Nucl. Phys. B448, (1995) 220, hep-th/9503210.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • L. Dolan
    • 1
  1. 1.Department of PhysicsUniversity of North CarolinaChapel HillUSA

Personalised recommendations