The Transverse Lattice in 2+1 Dimensions

  • Brett van de Sande
  • Simon Dalley


Based on an idea due to Bardeen and Pearson, we formulate the light-front Hamiltonian problem for SU(N) Yang-Mills theory in (2+1)-dimensions using two continuous space-time dimensions with the remaining space dimension discretized on a lattice. We employ analytic and numerical methods to investigate the string tension and the glue-ball spectrum in the N → ∞ limit. Our preliminary results show qualitative agreement with recent Euclidean lattice Monte Carlo simulations. In the following, we attempt to give a more pedagogical introduction to the idea of the transverse lattice; more detail may be found in Ref. [1].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Dalley and B. van de Sande, preprint No. DAMTP-96-21 and hep-ph/9602291.Google Scholar
  2. [2]
    M. Teper, Phys. Lett. 289B, 115 (1992).MathSciNetADSGoogle Scholar
  3. M. Teper, Phys. Lett. 311B, 223 (1993); Lecture at Rutherford-Appleton Laboratory, U. K. (December 1995).ADSGoogle Scholar
  4. [3]
    W. A. Bardeen and R. B. Pearson, Phys. Rev. D 14, 547 (1976).ADSCrossRefGoogle Scholar
  5. [4]
    W. A. Bardeen, R. B. Pearson, and E. Rabinovici, Phys. Rev. D 21, 1037 (1980).ADSCrossRefGoogle Scholar
  6. [5]
    P. Griffin, Nucl. Phys. B372, 270 (1992).MathSciNetADSCrossRefGoogle Scholar
  7. [6]
    G. ’t Hooft, Nucl. Phys. B72, 461 (1974).ADSGoogle Scholar
  8. M. Einhorn, Phys. Rev. D 14, 3451 (1976).ADSCrossRefGoogle Scholar
  9. [7]
    D. Robertson, Phys. Rev. D 47, 2549 (1993).MathSciNetADSCrossRefGoogle Scholar
  10. S. S. Pinsky, and B. van de Sande, Phys. Rev. D 49, 2001 (1994).ADSCrossRefGoogle Scholar
  11. S. S. Pinsky, B. van de Sande, J. Hiller, Phys. Rev. D 51, 726 (1995).ADSCrossRefGoogle Scholar
  12. [8]
    I. R. Klebanov and L. Susskind, Nucl. Phys. B309, 175 (1988).MathSciNetADSCrossRefGoogle Scholar
  13. [9]
    H.-C. Pauli and S. Brodsky, Phys. Rev. D 32, 1993 and 2001 (1985).MathSciNetADSCrossRefGoogle Scholar
  14. [10]
    K. Hornbostel, Ph. D Thesis, SLAC-PUB No. 333 (1988).Google Scholar
  15. [11]
    B. van de Sande and M. Burkardt, preprint No. MPI H-V 1995 and hep-th/9510104, to appear in Phys. Rev. D.Google Scholar
  16. [12]
    S. Dalley and T. R. Morris, Int. Journal Mod. Phys. A5, 3929 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Brett van de Sande
    • 1
  • Simon Dalley
    • 2
  1. 1.Max Planck Institut für KernphysikHeidelbergGermany
  2. 2.Department of Applied Mathematics and Theoretical PhysicsCambridgeEngland

Personalised recommendations