Skip to main content

Circadian Regulation of Vertebrate Photoreceptors

Rhythms in the Gating of Cationic Channels

  • Chapter
Photostasis and Related Phenomena

Abstract

Even though ambient light intensity can be as much as 12 orders of magnitude greater during the day than during the night, visual systems can detect contrasts in the face of these enormous changes in background illumination. Some of this behavior can be attributed to acute adaptive phenomena, but it is now clear that circadian oscillators also play an important role in regulating photoreceptor responses to large daily changes in ambient illumination (reviewed by Cahill and Besharse, 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Adler, R. (1986). Developmental predetermination of the structural and molecular polarization of photoreceptor cells. Developmental Biology 117:520–527.

    Article  PubMed  CAS  Google Scholar 

  • Araki, M., Fukada, Y., Shichida, Y., Yoshizawa, T., and Tokunaga, F. (1992). Differentiation of both rod and cone types of photoreceptors in the in vivo and in vitro developing pineal glands of the quail. Developmental Brain Research 65:85–92.

    Article  PubMed  CAS  Google Scholar 

  • Barrett, R. K., and Takahashi, J. S. (1995). Temperature compensation and temperature entrainment of the chick pineal cell circadian clock. Journal of Neuroscience 15:5681–5692.

    PubMed  CAS  Google Scholar 

  • Bassi, C. J., and Powers, M. K. (1986). Daily fluctuations in the detectability of dim lights by humans. Physiology and behavior 38:871–877.

    Article  PubMed  CAS  Google Scholar 

  • Bassi, C. J., and Powers, M. K. (1987). Circadian rhythm in goldfish visual sensitivity. Investigative Ophthalmology and Visual Science 28:1811–1815.

    PubMed  CAS  Google Scholar 

  • Bastianelli, E., and Pochet, R. (1994). Calbindin-D28k, calretinin, and recoverin immunoreactivities in developing chick pineal gland. Journal of Pineal Research 17:103–111.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, M., Iuvone, P. M., Cassone, V. M., Roseboom, P. D., Coon, S. L., and Klein, D. C. (1997). Avian melatonin synthesis: photic and circadian regulation of serotonin N-methyltransferase mRNA in the chicken pineal gland and retina. Journal of Neurochemistry 68:213–224.

    Article  PubMed  CAS  Google Scholar 

  • Besharse, J. C., and Dunis, D. A. (1983). Methoxyindoles and photoreceptor metabolism: activation of rod shedding. Science 219:1341–1343.

    Article  PubMed  CAS  Google Scholar 

  • Besharse, J. C., and Iuvone, P. M. (1983). Circadian clock in Xenopus eye controlling retinal serotonin N-acetyl-transferase. Nature 305:133–135.

    Article  PubMed  CAS  Google Scholar 

  • Besharse, J. C., and Iuvone, P. M. (1992). Is dopamine a light-adaptive or a dark-adaptive modulator in retina? Neurochemistry International 20:193–199.

    Article  PubMed  CAS  Google Scholar 

  • Besharse, J. C., Iuvone, P. M., and Pierce, M. E. (1988). Regulation of rhythmic photoreceptor metabolism: a role for postreceptoral neurons. In: Osborne, N. N., and Chader, G. J., eds. Progress in Retinal Research, Vol. 7. Pergamon Press, Oxford, pp. 21–61.

    Google Scholar 

  • Bischoff, M. B. (1969). Photoreceptoral and secretory structures in the avian pineal organ. Journal of Ultrastructure Research 28:16–26.

    Article  PubMed  CAS  Google Scholar 

  • Bonigk, W., Muller, F., Middendorff, R., Weyand, I., and Kaupp, U. B. (1996). Two alternatively spliced forms of the cGMP-gated channel α-subunit from cone photoreceptor are expressed in the chick pineal organ. Journal of Neuroscience 16:7458–7468.

    PubMed  CAS  Google Scholar 

  • Boya, J., and Zamorano, L. (1975). Ultrastructural study of the pineal gland of the chicken (Gallus gallus). Acta Anatomica 92:202–226.

    Article  PubMed  CAS  Google Scholar 

  • Cahill, G. M., and Besharse, J. C. (1991). Resetting the circadian clock in cultured Xenopus eyecups: regulation of retinal melatonin rhythms by light and D2 dopamine receptors. Journal of Neuroscience 11:2959–2971.

    PubMed  CAS  Google Scholar 

  • Cahill, G. M., and Besharse, J. C. (1993). Circadian clock functions localized in Xenopus retinal photoreceptors. Neuron 10:573–577.

    Article  PubMed  CAS  Google Scholar 

  • Cahill, G. M., and Besharse, J. C. (1995). Circadian rhythmicity in vertebrate retinas: regulation by a photoreceptor oscillator. Progress in Retinal Eye Research 14:267–291.

    Article  CAS  Google Scholar 

  • Calvo, J., and Boya, J. (1979). Ultrastructural study of the embryonic development of the pineal gland of the chicken (Gallus gallus). Acta Anatomica 103:39–73.

    Article  PubMed  CAS  Google Scholar 

  • Collin, J. P., Mirshahi, M., Brisson, P., Falcon, J., Guerlotte, J., and Faure, J. P. (1986). Pineal-retinal molecular relationships: distribution of “S-antigen” in the pineal complex. Neuroscience 19:657–666.

    Article  PubMed  CAS  Google Scholar 

  • D’Souza, T., and Dryer, S. E. (1994). Intracellular free Ca2+ in dissociated cells of the chick pineal gland: regulation by membrane depolarization, second messengers, and neuromodulators, and evidence for release of intracellular Ca2+ stores. Brain Research 656:85–94.

    Article  PubMed  Google Scholar 

  • D’Souza, T., and Dryer, S. E. (1995). Effects of phosphodiesterase inhibitors and forskolin on cyclic GMP-activated channels in intact isolated cells of the chick pineal gland. Neurochemistry International 27:527–533.

    PubMed  Google Scholar 

  • D’Souza, T., and Dryer, S. E. (1996). A novel cationic channel regulated by a vertebrate intrinsic circadian oscillator. Nature 382:165–167.

    Article  PubMed  Google Scholar 

  • Deary, A., and Burnside, B. (1986). Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: I. Induction of cone contraction is mediated by D2 receptors. Journal of Neurochemistry 46:1006–1021.

    Article  Google Scholar 

  • Deary, A., and Burnside, B. (1989). Light-induced dopamine release from teleost retinas acts as a light-adaptive signal to the retinal pigment epithelium. Journal of Neurochemistry 53:870–878.

    Article  Google Scholar 

  • DeVries, S. H., and Schwartz, E. A. (1992). Hemi-gap-junction channels in solitary horizontal cells of the catfish retina. Journal of Physiology (London) 445:201–230.

    CAS  Google Scholar 

  • Dryer, S. E., and Henderson, D. (1991). A cyclic GMP-activated channel in dissociated cells of the chick pineal gland. Nature 353:756–758.

    Article  PubMed  CAS  Google Scholar 

  • Dryer, S. E., and Henderson, D. (1993). Cyclic GMP-activated channels of the chick pineal gland: effects of divalent cations, pH, and cyclic AMP. Journal of Comparative Physiology [A] 172:271–279.

    Article  CAS  Google Scholar 

  • Dubocovich, M. L. (1983). Melatonin is a potent modulator of dopamine release in retina. Nature 306:782–784.

    Article  PubMed  CAS  Google Scholar 

  • Ebihara, L., Berthoud, V., and Beyer, E. (1995). Distinct behavior of connexin 56 and connexin 46 gap junctional channels can be predicted from the behavior of their hemi-gap-junction channels. Biophysical Journal 68:1796–1803.

    Article  PubMed  CAS  Google Scholar 

  • Fain, G. L., and Lisman, J. E. (1993). Photoreceptor degeneration in vitamin A deprivation and retinitis pigmentosa: the equivalent light hypothesis. Experimental Eye Research 57:335–340.

    Article  PubMed  CAS  Google Scholar 

  • Florez, J. C., and Takahashi, J. S. (1996). Regulation of tryptophan hydroxylase by cyclic AMP, calcium, norepinephrine, and light in cultured chick pineal cells. Journal of Neurochemistry 67:242–250.

    Article  PubMed  CAS  Google Scholar 

  • Foster, R. G., Korf, H. W., and Schalken, J. J. (1987). Immunocytochemical markers revealing retinal and pineal but not hypothalamic photoreceptor systems in the Japanese quail. Cell and Tissue Research 248:161–167.

    Article  PubMed  CAS  Google Scholar 

  • Gan, J., Alonso-Gomez, A. L., Avendano, G., Johnson, B., and Iuvone, P. M. (1995). Melatonin biosynthesis in photoreceptor-enriched chick retinal cell cultures: a role of cyclic AMP in the K+-evoked, Ca2+-dependent induction of serotonin N-acetyltransferase activity. Neurochemistry International 27:147–155.

    Article  PubMed  CAS  Google Scholar 

  • Gotto, K., Miki, N., and Kondo, H. (1989). An immunohistochemical study of pinealocytes of chicks and some other lower vertebrates by means of visinin (retinal cone-specific protein)-immunoreactivity. Archives of Histology and Cytology 52:451–458.

    Article  Google Scholar 

  • Green, C. B., and Besharse, J. C. (1996). Identification of a novel vertebrate circadian clock-regulated gene encoding the protein nocturnin. Proceedings of the National Academy of Sciences of the USA 93:14884–14888.

    Article  PubMed  CAS  Google Scholar 

  • Green, C. B., Cahill, G. M., and Besharse, J. C. (1994). Tryptophan hydroxylase expression is regulated by a circadian. clock in Xenopus laevis retina. Journal of Neurochemistry 62:2420–2428.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, N. L., and Zatz, M. (1989). Voltage-dependent calcium channels regulate melatonin output from cultured chick pineal cells. Journal of Neuroscience 9:2462–2467.

    PubMed  CAS  Google Scholar 

  • Henderson, D., and Dryer, S. E. (1992). Voltage-and Ca2+-activated ionic currents in acutely isolated cells of the chick pineal gland. Brain Research 572:182–189.

    Article  PubMed  CAS  Google Scholar 

  • Iuvone, P. M. (1990). Development of melatonin synthesis in chicken retina: regulation of serotonin N-acetyltransferase activity by light, circadian oscillators, and cyclic AMP. Journal of Neurochemistry 54:1562–1568.

    Article  PubMed  CAS  Google Scholar 

  • Iuvone, P. M., Gan, J., and Avendano, G. (1991). K+-evoked depolarization stimulates cyclic AMP accumulation in photoreceptor-enriched retinal cell cultures: role of calcium influx through dihydropyridine-sensitive calcium channels. Journal of Neurochemistry 57:615–621.

    Article  PubMed  CAS  Google Scholar 

  • Kemali, M., Kemali, D., Lovero, N., Maj, N., and Milici, N. (1987). Lithium and melatonin: morphological modifications induced in frog retina pigment screening. Pharmacopsychiatria (Stuttgart) 20:224–226.

    Article  CAS  Google Scholar 

  • Kolbinger, W., Kohler, K., Oetting, H., and Weiler, R. (1990). Endogenous dopamine and cyclic events in the fish retina: HPLC assay of total content, release, and metabolic turnover during differing light/dark cycles. Visual Neuroscience 5:417–428.

    Article  PubMed  Google Scholar 

  • Lamb, T. D., and Pugh, E. N. Jr. (1992). A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. Journal of Physiology (London) 449:719–758.

    CAS  Google Scholar 

  • Li, T., Franson, W. K., Gordon, J. W., Berson, E. L., and Dryja, T. P. (1995). Constitutive activation of phototransduction by K296E opsin is not a cause of photoreceptor degeneration. Proceedings of the National Academy of Sciences of the USA 92:3551–3555.

    Article  PubMed  CAS  Google Scholar 

  • Lu, C., and McMahon, D. G. (1996). Gap junction channel gating at bass retinal electrical synapses. Visual Neuroscience 13:1049–1057.

    Article  PubMed  CAS  Google Scholar 

  • McCormack, C. A., and Burnside, B. (1992). A role for endogenous dopamine in circadian regulation of retinal cone movements. Experimental Eye Research 55:511–520.

    Article  PubMed  CAS  Google Scholar 

  • McCormack, C. A., and Burnside, B. (1993). Light and circadian modulation of teleost retinal tyrosine hydroxylase activity. Investigative Ophthalmology and Visual Science 34:1853–1860.

    PubMed  CAS  Google Scholar 

  • McMahon, D. H., and Brown, D. R. (1994). Modulation of gap-junction channel gating at zebrafish retinal electrical synapses. Journal of Neurophysiology 72:2257–2268.

    PubMed  CAS  Google Scholar 

  • McMahon, D. G., and Matson, M. P. (1996). Horizontal cell electrical coupling in the giant danio: synaptic modulation by dopamine and synaptic maintenance by calcium. Brain Research 718:89–96.

    Article  PubMed  CAS  Google Scholar 

  • Mangel, S. C., and Dowling, J. E. (1985). Responsiveness and receptive field size of carp horizontal cells are reduced by prolonged darkness and dopamine. Science 229:1107–1109.

    Article  PubMed  CAS  Google Scholar 

  • Max, M., McKinnon, P. J., Seidenman, K. J., Barrett, R. K., Appelbury, M. L., Takahashi, J. S., and Margolskee, R. F. (1995). Pineal opsin: a nonvisual opsin expressed in chick pineal. Science 267:1502–1506.

    Article  PubMed  CAS  Google Scholar 

  • Meissl, H., and Ekstrom, P. (1988). Photoreceptor responses to light in the isolated pineal organ of the trout, Salmo gairdneri. Neuroscience 25:1071–1076.

    Article  PubMed  CAS  Google Scholar 

  • Nikaido, S. S., and Takahashi, J. S. (1996). Calcium modulates circadian variation in cAMP-stimulated melatonin in chick pineal cells. Brain Research 716:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Okano, T., Yoshizawa, T., and Fukada, Y. (1994). Pinopsin is a chicken pineal photoreceptive molecule. Nature 372:94–97.

    Article  PubMed  CAS  Google Scholar 

  • Pierce, M. E., and Besharse, J. C. (1985). Circadian regulation of retinomotor movements. Journal of General Physiology 86:671–689.

    Article  PubMed  CAS  Google Scholar 

  • Pierce, M. E., Sheshberadaran, H., Zhang, Z., Fox, L. E., Appelbury, M. L., and Takahashi, J. S. (1993). Circadian regulation of iodopsin gene expression in embryonic photoreceptors in retinal cell culture. Neuron 10:579–584.

    Article  PubMed  CAS  Google Scholar 

  • Pu, G. A., and Dowling, J. E. (1981). Anatomical and physiological characteristics of pineal photoreceptor cell in the larval lamprey, Petromyzon marinus. Journal of Neurophysiology 46:1018–1038.

    PubMed  CAS  Google Scholar 

  • Rieke, F., and Schwartz, E. A. (1994). A cGMP-gated current can control exocytosis at cone synapses. Neuron 13:863–873.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, P. R., Buczylko, J., Ohguro, H., and Palczewski, K. (1994). Opsins with mutations at the site of chromophore attachment constitutively activate transducin but are not phosphorylated by rhodopsin kinase. Proceedings of the National Academy of Sciences of the USA 91:5411–5415.

    Article  PubMed  CAS  Google Scholar 

  • Saez, J. C., Berthoud, V. M., Kadle, R., Traub, O., Nicholson, B. J., Bennett, M. V. L., and Dermietzel, R. (1991). Pinealocytes in rats: connexin identification and increase in coupling caused by norepinephrine. Brain Research 568:265–275.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, A. P., Collazo, C. R., Easterling, K., Young, C. D., and Karwoski, C. J. (1993). Circadian rhythm in the visual system of the lizard Anolis carolinensis. Journal of Biological Rhythms 8:107–124.

    Article  PubMed  CAS  Google Scholar 

  • Sokal, R. R., and Rohlf, F. J. (1981). Biometry. Freeman, New York.

    Google Scholar 

  • Steiner, E., and Ebihara, L. (1996). Functional characterization of canine connexin 45. Journal of Membrane Biology 150:153–161.

    Article  PubMed  CAS  Google Scholar 

  • Suchyna, T. M., Xu, L.-X., Gao, F., Fourtner, C. R., and Nicholson, B. J. (1993). Identification of a proline residue as a transduction element in voltage gating of gap junctions. Nature 365:847–850.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, J. S., Murakami, N., Nikaido, S. S., Pratt, B. L., and Robertson, L. M. (1989). The avian pineal, a vertebrate model system of the circadian oscillator: cellular regulation of circadian rhythms by light, second messengers and macromolecular synthesis. Recent Progress in Hormone Research 45:279–352.

    PubMed  CAS  Google Scholar 

  • Tamotsu, S., and Morita, Y. (1986). Photoreception in pineal organs of larval and adult lampreys, Lampetra japonica. Journal of Comparative Physioliology [A] 159:1–5.

    Article  CAS  Google Scholar 

  • Terman, M., and Terman, J. (1985). A circadian pacemaker for visual sensitivity? Annals of the New York Academy of Sciences 453:147–161.

    Article  PubMed  CAS  Google Scholar 

  • Tosini, G., and Menaker, M. (1996). Circadian rhythms in cultured mammalian retina. Science 272:419–421.

    Article  PubMed  CAS  Google Scholar 

  • Trexler, E. B., Bennett, M. V. L., Bargiello, T. A., and Verselis, V. K. (1996). Voltage gating and permeation in a gap junction hemichannel. Proceedings of the National Academy of Sciences of the USA 93:5836–5841.

    Article  PubMed  CAS  Google Scholar 

  • van Veen, T., Ostholm, T., Gierschik, P., Spiegel, A., Somers, R., Korf, H. W., Klein, D. C. (1986). Alphatransducin immunoreactivity in retinae and sensory pineal organs of adult vertebrates. Proceedings of the National Academy of Sciences of the USA 83:912–916.

    Article  PubMed  Google Scholar 

  • Verselis, V. K., Ginter, C. S., and Bargiello, T. A. (1994). Opposite voltage gating polarities of two closely related connexins. Nature 368:348–351.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., and Mangel, S. C. (1996a). A circadian clock regulates rod and cone input to fish retinal cone horizontal cells. Proceedings of the National Academy of Sciences of the USA 93:4655–4660.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., and Mangel, S. C. (1996b). Melatonin acts as a circadian clock regulator of rod and cone pathways in fish retina. Society for Neuroscience Abstracts 22:792–12 (abstract).

    Google Scholar 

  • Weiler, R., Köhler, K., Kursch, M., and Wagner, H. J. (1988). Glutamate and dopame modulate synaptic plasticity in horizontal cell dendrites of fish retina. Neuroscience Letters 87:205–209.

    Article  PubMed  CAS  Google Scholar 

  • White, M. P., and Hock, P. A. (1992). Effects of continuous darkness on ERG correlates of disc shedding in the rabbit retina. Experimental Eye Research 54:173–180.

    Article  PubMed  CAS  Google Scholar 

  • Wirz-Justice, A., Da Prada, M., and RemĂ©, C. (1984). Circadian rhythm in rat retinal dopamine. Neuroscience Letters 45:21–25.

    Article  PubMed  CAS  Google Scholar 

  • Witkovsky, P., and Schutte, M. (1991). Organization of dopaminergic neurons in vertebrate retinas. Visual Neuroscience 7:113–124.

    Article  PubMed  CAS  Google Scholar 

  • Witkovsky, P., Stone, S., and Besharse, J. C. (1988). Dopamine modifies the balance of rod and cone inputs to horizontal cells of the Xenopus retina. Brain Research 449:332–336.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, K., Kayamura, K., and Imaki, J. (1993). Differential expression of c-fos mRNA in rat retinal cells: regulation by light/dark cycle. Neuron 10:1049–1054.

    Article  PubMed  CAS  Google Scholar 

  • Zatz, M. (1992a). Agents that affect calcium influx can change cyclic nucleotide levels in cultured chick pineal cells. Brain Research 583:304–307.

    Article  PubMed  CAS  Google Scholar 

  • Zatz, M. (1992b). Does the circadian pacemaker act through cyclic AMP to drive the melatonin rhythm in chick pineal cells? Journal of Biological Rhythms 7:301–311.

    Article  PubMed  CAS  Google Scholar 

  • Zatz, M. (1994). Photoendocrine transduction in cultured chick pineal cells: IV. What do vitamin A depletion and retinaldehyde addition do to the effects of light on the melatonin rhythm? Journal of Neurochemistry 62:2001–2011.

    Article  PubMed  CAS  Google Scholar 

  • Zatz, M. (1988). Two mechanisms of photoendocrine transduction in cultured chick pineal cells: pertussis toxin blocks the acute but not the phase-shifting effects of light on the melatonin rhythm. Brain Research 453:63–71.

    Article  PubMed  CAS  Google Scholar 

  • Zawilska, J. B., and Iuvone, P. M. (1989). Catecholamine receptors regulating serotonin N-acetyltransferase activity and melatonin content of chick retina and pineal gland: D2-dopamine receptors and alpha-2 adrenergic receptors in pineal gland. Journal of Pharmacology and Experimental Therapeutics 250:86–92.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dryer, S.E., D’Souza, T., Reiser, M.A. (1998). Circadian Regulation of Vertebrate Photoreceptors. In: Williams, T.P., Thistle, A.B. (eds) Photostasis and Related Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1549-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1549-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1551-1

  • Online ISBN: 978-1-4899-1549-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics