Evaluation of a Sodium Nonatitanate, Sodium Titanosilicate, and Pharmacosiderite-Type Ion Exchangers for Strontium Removal from DOE Waste and Hanford N-Springs Groundwater Simulants

  • Elizabeth A. Behrens
  • Paul Sylvester
  • Gina Graziano
  • Abraham Clearfield


A series of titanosilicate and titanate inorganic ion exchangers were developed by the Department of Chemistry at Texas A&M University in cooperation with AlliedSignal and the Pacific Northwest National Laboratory (PNNL) for the selective removal of strontium from different contaminated aqueous defense wastes and groundwater.


Pacific Northwest National Laboratory Sodium Titanate Waste Simulant Tank Waste Cobalt Hexacyanoferrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.G. Levi, Hanford seeks short-and long-term solutions to its legacy of waste, Physics Today 45:17 (1992).Google Scholar
  2. 2.
    K.D. Crowley, Nuclear waste disposal: the technical challenges, Physics Today 50:32 (1997).CrossRefGoogle Scholar
  3. 3.
    J.F. Ahearne, Radioactive waste: the size of the problem, Physics Today 50:24 (1997).CrossRefGoogle Scholar
  4. 4.
    E.A. Behrens, D.M. Poojary, and A. Clearfield, Syntheses, crystal structures, and ion-exchange properties of porous titanosilicates, HM3(TiO)4(SiO4)3·4H2O (M=H, K, Cs), structural analogues of the mineral pharmacosiderite, Chem. Mater. 8:1236 (1996)CrossRefGoogle Scholar
  5. 5.
    A.I. Bortun, L.N. Bortun, and A. Clearfield, Ion exchange properties of a cesium selective titanosilicate, Solv. Extr. Ion Exch. 14:341 (1996).CrossRefGoogle Scholar
  6. 6.
    E.A. Behrens and A. Clearfield, Titanium silicates, M3HTi4O4(SiO4)3·4H2O(M=Na, K), with three-dimensional tunnel structures for the selective removal of strontium and cesium from wastewater solutions, Microporous Mater. (1997) (In Press).Google Scholar
  7. 7.
    L.H. Kullberg and A. Clearfield, The ion exchange selectivity behavior of zirconium suphophosphonates towards alkali and alkaline earth cations, Solv. Extr. Ion Exch. 7:527 (1989).CrossRefGoogle Scholar
  8. 8.
    M. Zamin, T. Shaheen, and A. Dyer, Use of amorphous zirconium phoshate for the treatment of radioactive waste 1. Sr and Cs radioisotope uptake, J. Radioanal. Nucl. Chem. 182:345 (1994).CrossRefGoogle Scholar
  9. 9.
    D.M. Poojary, E.A. Behrens, and A. Clearfield, Syntheses and x-ray powder structures of some pharmacosiderite analogues, HM3(AO)4(BO4)3· 4H2O( M=K, Rb, Cs; A=Ti, Ge; B=Si, Ge), Chem. Mater, submittedGoogle Scholar
  10. 10.
    D.M. Chapman, Crystalline group IVA metal-containing molecular sieves, U.S. Patent 5,015,453 (1991).Google Scholar
  11. 11.
    W.T.A. Harrison, T. Gier, and G.D. Stucky, Single-crystal structure of Cs3HTi4O4(SiO4)3·4H2O, a titanoslicate analog, Zeolites 15: 40 (1995).CrossRefGoogle Scholar
  12. 12.
    J. Lehto and A. Clearfield, Preparation, structure, and ion-exchange properties of Na4Ti9O20·xH2O, J. Solid State Chem. 73:98 (1988).CrossRefGoogle Scholar
  13. 13.
    J. Lehto, R. Harjula, A.M. Girard, The equilibrium of strontium ion exchange on sodiun titanate, J. Chem. Soc. Dalton Trans. 1:101 (1989).CrossRefGoogle Scholar
  14. 14.
    J. Lehto, O.J. Heinonen, J.K. Mietinen, Sorption properties of sodium titanate, Radiochem. Radioanal. Lett. 46:381 (1981).Google Scholar
  15. 15.
    J. Lehto and A. Clearfield, The ion exchange of strontium on sodium titanate, J. Radioanal. Nucl. Chem. Letters 118:1 (1987)CrossRefGoogle Scholar
  16. 16.
    R.A. Cahill, Synthesis, characterization, and properties of pillared layered metal oxides and phosphates, Texas A&M University College Station (1996).Google Scholar
  17. 17.
    R.G. Anthony, R.G. Dosch, D. Gu, and C.V. Philip, Use of silicotitanates for removing cesium and strontium from defense waste, Ind. Eng. Chem. Res. 33:2702 (1994).CrossRefGoogle Scholar
  18. 18.
    D.M. Poojary, R.A. Cahill, and A. Clearfield, Synthesis, crystal structures, and ion-exchange properties of a novel porous titanosilicate, Chem. Mater. 6:2364 (1994).CrossRefGoogle Scholar
  19. 19.
    D.M. Poojary, A.I. Bortun, L.N. Bortun, and A. Clearfield, Structural studies on the ion-exchanged phases of a porous titanosilicate, Na2Ti2O3SiO4·2H2O. Inorg. Chem. 35:6131(1996).CrossRefGoogle Scholar
  20. 20.
    T.M. Nenoff, J.E. Miller, S.G. Thoma, and D.E. Trudell, Highly selective inorganic crystalline ion exchange material for Sr2+ in acidic media, Environ. Sci. Technol. 30:3630(1996).CrossRefGoogle Scholar
  21. 21.
    Z.V Svitra; S.F. Marsh; and S.M. Bowen, “Distributions of 12 Elements on 64 Absorbers from Simulated Hanford Neutralized Current Acid Waste (NCAW),” LA-12889, Los Alamos National Laboratory, Los Alamos New Mexico (1994).CrossRefGoogle Scholar
  22. 22.
    S.F. Marsh; Z.V. Svitra; and S.M. Bowen “Distributions of 15 Elements on 58 Absorbers from Simulated Hanford Double-Shell Slurry Feed (DSSF),” LA-12863, Los Alamos National Laboratory, Los Alamos. 1994.CrossRefGoogle Scholar
  23. 23.
    G. Brown, Pacific Northwest National Laboratory, Richland WA, personal communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Elizabeth A. Behrens
    • 1
  • Paul Sylvester
    • 1
  • Gina Graziano
    • 1
  • Abraham Clearfield
    • 1
  1. 1.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations