Advertisement

Factors that Determine AChE Efficacy in Synaptic Function

  • Lili Anglister

Abstract

Acetylcholinesterase (AChE) at neuromuscular junctions (nmj’s) is concentrated in the synaptic cleft. AChE consists of several molecular forms, some of which are specifically adherent to synaptic basal lamina (for review, see 20). Since all molecular forms of AChE have similar catalytic activity the major factors that determine the efficacy of AChE action in synaptic function involve the position of AChE molecules in the synaptic cleft, the cellular origin and regulation of AChE molecular forms, and the density of AChE. Various aspects concerning these factors have been studied recently in our laboratory and are reviewed in this chapter.

Keywords

Schwann Cell Wallerian Degeneration Synaptic Site High Salt Buffer Schwann Cell Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anglister, L. J. Cell Biol. 1991, 115, 755–764.PubMedCrossRefGoogle Scholar
  2. 2.
    Anglister, L.; McMahan, U.J. J. Cell Biol. 1985, 101, 735–743.PubMedCrossRefGoogle Scholar
  3. 3.
    Anglister, L.; Eichler, J.; Szabo, M.; Haesaert, B.; Salpeter, M.M. J. Neurosci. Meth. 1998, in press.Google Scholar
  4. 4.
    Anglister, L.; Haesaert, B.; McMahan, U. J. J. Cell Biol. 1994a, 125, 183–196.PubMedCrossRefGoogle Scholar
  5. 5.
    Anglister, L.; Stiles, J.R.; Salpeter, M.M. Neuron 1994b, 12, 1–12.CrossRefGoogle Scholar
  6. 6.
    Bourne, Y.; Taylor, P.; Marchot, P. Cell 1995, 83, 503–512.PubMedCrossRefGoogle Scholar
  7. 7.
    Brandan, E.; Maldonado, M.; Garrido, J.; Inestrosa, N.J. Cell Biol. 1985, 101, 985–992CrossRefGoogle Scholar
  8. 8.
    Cerveñansky, C.; Engstróm, A.; Karlsson, E. Biochim. Biophys. Acta 1994, 1199, 1–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Cervenañsky, C.; Engstróm, A.; Karlsson, E. Eur. J. Biochem. 1995, 229, 270–275.PubMedCrossRefGoogle Scholar
  10. 10.
    Deprez, P.N.; Inestrosa, N.C. J. Biol. Chem. 1995, 270, 11043–11046.PubMedCrossRefGoogle Scholar
  11. 11.
    Di Giamberardico, L.; Couraud, J.Y. Nature 1978, 271, 170–172.Google Scholar
  12. 12.
    Duran, R.; Cervenansky, C.; Dajas, F.; Tipton, K.F Biochim. Biophys. Acta 1994, 1201, 381–388.PubMedCrossRefGoogle Scholar
  13. 13.
    Eastman, J.; Wilson, E.J.; Cervenansky, C.; Rosenberry, T.L. J. Biol. Chem. 1995, 270, 19694–19701.PubMedCrossRefGoogle Scholar
  14. 14.
    Fertuck, H.C.; Salpeter, M.M.J. Histochem. Cytochem. 1974, 22, 80–87.CrossRefGoogle Scholar
  15. 15.
    Harel, M.; Kleywegt, G.J.; Ravelli, R.B.; Silman, I.; Sussman, J.L. Structure 1995, 3, 1355–1366.PubMedCrossRefGoogle Scholar
  16. 16.
    Karlsson, E.; Mbugua, P.M.; Rodriguez-Ithurralde, D. J. Physiol., Paris 1984, 79, 232–240.Google Scholar
  17. 17.
    Karlsson, E.; Mbugua, P.M.; Rodriguez-Ithurralde, D. Pharmac. Ther. 1985, 30, 259–276.CrossRefGoogle Scholar
  18. 18.
    Lømo, T.; Slater, C.R. J. Physiol. 1980, 303, 191–202.PubMedGoogle Scholar
  19. 19.
    Marchot, P.; Khélif, A.; Ji, Y.-H.; Mansuelle, P.; Bougis, P. J. Biol. Chem. 1993, 268, 12458–12467.PubMedGoogle Scholar
  20. 20.
    Massoulié, J.; Pezzementi, L.; Bon, S.; Krejci, E.; Vallette, F.-M. Prog. Neurobiol. 1993, 41, 31–91.PubMedCrossRefGoogle Scholar
  21. 21.
    McMahan U.J.; Sanes, J.R.; Marshall, L.M. Nature (Lond.) 1978, 271, 172–174.CrossRefGoogle Scholar
  22. 22.
    Radic, Z.; Durân, R.; Vellom, D.C.; Li, Y; Cervenansky, C.; Taylor, P. J. Biol. Chem. 1994, 269, 1–7.Google Scholar
  23. 23.
    Radic, Z.; Quinn, D.M.; Vellom, D.C.; Camp., S.; Taylor, P. J. Biol. Chem. 1995, 270, 20391–20399.PubMedCrossRefGoogle Scholar
  24. 24.
    Reichert, F.; Saada, A.; Rothshenker, S.J. Neurosci. 1994, 14, 3231–3245.Google Scholar
  25. 25.
    Rodriguez-Ithurralde, D.; Sliveira, R.; Barbeito, L.; Dajas, F. Neurochem. Intl. 1983, 5, 261–274.CrossRefGoogle Scholar
  26. 26.
    Rogers, A.W.; Darzynkiewicz, Z.; Salpeter, M.M.; Ostrowski, K.; Barnard, E.A. J. Cell Biol. 1969, 41, 665–685.PubMedCrossRefGoogle Scholar
  27. 27.
    Rossi, S.R.; Rotundo, R.L. J. Biol. Chem. 1993, 268, 19152–19159.PubMedGoogle Scholar
  28. 28.
    Rossi, S.R.; Rotundo, R.L. J. Biol. Chem. 1996, 271, 1979–1987.PubMedCrossRefGoogle Scholar
  29. 29.
    Rotundo, R.L.; Rossi, S.G.; Anglister, L. J. Cell Biol. 1997, 136, 367–374.PubMedCrossRefGoogle Scholar
  30. 30.
    Salpeter, M.M. J. Cell Biol. 1969, 42, 122–134.PubMedCrossRefGoogle Scholar
  31. 31.
    Salpeter, M.M.; Fertuck, H.C.; Salpeter, E.E. J. Cell Biol. 1977, 72, 161–173.PubMedCrossRefGoogle Scholar
  32. 32.
    Salpeter, M.M.; Plattner, H.; Rogers, A.W. J. Histochem. Cytochem. 1972, 20, 1059–1068.PubMedCrossRefGoogle Scholar
  33. 33.
    Salpeter, M.M.; Rogers, A.W.; Kasprzak, H.; McHenry, F.A. J. Cell Biol. 1978, 78, 274–285PubMedCrossRefGoogle Scholar
  34. 34.
    Weinberg, C.B.; Hall, Z.W. Develop. Biol. 1979, 69, 631–635.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Lili Anglister
    • 1
  1. 1.Department of Anatomy and Cell BiologyHebrew University-Hadassah Medical SchoolJerusalemIsrael

Personalised recommendations