Skip to main content

Temporal Behavior of Quantum Systems and Quantum Zeno Effect

  • Chapter
  • 241 Accesses

Abstract

The temporal behavior of an unstable system is analyzed quantum mechanically and compared to the exponential decay law. The general mathematical features of the quantum evolution, yielding a quadratic region at short times and a power law at long times, are briefly reviewed.

The consequences of the short-time quadratic evolution are curious: By performing many measurements in rapid succession on a quantum system, in order to check whether it is still in its initial state, one can hinder its evolution. This phenomenon is known as the quantum Zeno effect and is discussed in detail. In this respect, a specific example involving neutron spin is considered. Finally, we focus our attention on some interesting features of the evolution law.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Gamow, Z. Phys., 51, 204 (1928).

    Article  MATH  Google Scholar 

  2. V. Weisskopf and E. P. Wigner, Z. Phys., 63, 54 (1930); 65, 18 (1930).

    Article  MATH  Google Scholar 

  3. G. Breit and E. P. Wigner, Phys. Rev., 49, 519 (1936).

    Article  MATH  Google Scholar 

  4. E. Fermi, Nuclear Physics(Univ. Chicago, Chicago, 1950) pp. 136, 148; See also Notes on Quantum Mechanics. A Course Given at the University of Chicago in 1954,edited by E Segré (Univ. Chicago, Chicago, 1960) Lee. 23; Rev. Mod. Phys., 4, 87 (1932).

    MATH  Google Scholar 

  5. L. Mandelstam and I. Tamm, J. Phys., 9, 249 (1945)

    MathSciNet  Google Scholar 

  6. V. Fock and N. Krylov, J. Phys., 11, 112 (1947).

    MathSciNet  Google Scholar 

  7. E. J. Hellund, Phys. Rev., 89, 919 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Namiki and N. Mugibayashi, Prog. Theor. Phys., 10, 474 (1953).

    Article  MATH  Google Scholar 

  9. L. Fonda, G. C. Ghirardi, and A. Rimini, Rep. Prog. Phys., 41, 587 (1978)

    Article  Google Scholar 

  10. P. Exner, Open Quantum Systems and Feynman Integrals(Reidel, Dordrecht, 1985).

    Book  MATH  Google Scholar 

  11. H. Nakazato, M. Namiki, and S. Pascazio, Int. J. Mod. Phys., B10,247 (1996).

    Google Scholar 

  12. A. Beskow and J. Nilsson, Arkiv für Fysik, 34, 561 (1967).

    Google Scholar 

  13. L. A. Khalfin, Zh. Eksp. Teor. Fiz. Pis. Red., 8, 106 (1968) [JETP Letters, 8, 65 (1968)]; Phys. Lett., 112B,223 (1982); Usp. Fiz. Nauk, 160,185 (1990) [Sov. Phys. Usp., 33,10 (1990)].

    Google Scholar 

  14. L. Fonda, G. C. Ghirardi, A. Rimini, and T. Weber, Nuovo Cim., A15,689 (1973); A18,805 (1973)

    Article  Google Scholar 

  15. A. De Gasperis, L. Fonda, and G. C. Ghirardi, Nuovo Cim., A21,471 (1974)

    Article  Google Scholar 

  16. L. Fonda, G.C. Ghirardi, and A. Rimini, Rep. Prog. Phys., 41,587 (1978).

    Article  Google Scholar 

  17. B. Misra and E. C. G. Sudarshan, J. Math. Phys., 18,756 (1977).

    Article  MathSciNet  Google Scholar 

  18. A. Peres, Am. J. Phys., 48,931 (1980).

    Article  MathSciNet  Google Scholar 

  19. R. J. Cook, Phys. Scr., T21,49 (1988).

    Article  Google Scholar 

  20. W. H. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Phys. Rev., A41,2295 (1990).

    Google Scholar 

  21. T. Petrosky, S. Tasaki, and I. Prigogine, Phys. Lett., A151,109 (1990); Physica, A170,306 (1991)

    MathSciNet  Google Scholar 

  22. A. Peres and A. Ron, Phys. Rev., A42,5720 (1990)

    Google Scholar 

  23. L. E. Bal-lentine, Phys. Rev., A43,5165 (1991)

    Google Scholar 

  24. W. H. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Phys. Rev., A43,5168 (1991)

    Google Scholar 

  25. S. Inagaki, M. Namiki, and T. Tajiri, Phys. Lett., A166,5 (1992)

    Google Scholar 

  26. V. Frerichs and A. Schenzle, in: Foundations of Quantum Mechanics, Eds.: T. D. Black, M. M. Nieto, H. S. Pilloff, M. O. Scully, and R. M. Sinclair, (World Scientific, Singapore, 1992)

    Google Scholar 

  27. D. Home and M. A. B. Whitaker, J. Phys., A25,657 (1992)

    Google Scholar 

  28. D. Home and M. A. B. Whitaker, Phys. Lett., A173,327 (1993)

    Google Scholar 

  29. R. Onofrio, C. Presilla, and U. Tambini, Phys. Lett., A183,135 (1993)

    Google Scholar 

  30. Ph. Blanchard and A. Jadczyk, Phys. Lett., A183,272 (1993)

    MathSciNet  Google Scholar 

  31. T. P. Altenmuller and A. Schenzle, Phys. Rev. A, 49,2016 (1994); M. Berry, in: Fundamental Problems in Quantum Theory, Eds.: D. M. Greenberger and A. Zeilinger, Ann. N. Y. Acad. Sci., Vol. 755,303 (1995)

    Article  Google Scholar 

  32. A. Beige and G. Hegerfeldt, Phys. Rev., A53,53 (1996).

    Google Scholar 

  33. S. Pascazio, M. Namiki, G. Badurek, and H. Rauch, Phys. Lett., A179,155 (1993)

    Google Scholar 

  34. S. Pascazio and M. Namiki, Phys. Rev., A50,4582 (1994).

    MathSciNet  Google Scholar 

  35. H. Nakazato, M. Namiki, S. Pascazio, and H. Rauch, Phys. Lett., A217,203 (1996).

    Google Scholar 

  36. H. Nakazato and S. Pascazio, Mod. Phys. Lett., A10,3103 (1995).

    Google Scholar 

  37. L. A. Khalfin, Dokl. Acad. Nauk USSR, 115, 227 (1957) [Sov. Phys. DokL, 2, 340 (1957)]; Zh. Eksp. Teor. Fiz., 33,1371 (1958) [Sov. Phys. JETP, 6, 1053 (1958)].

    Google Scholar 

  38. J. von Neumann, Die Mathematische Grundlagen der Quantenmechanik(Springer, Berlin, 1932) [English translation: Mathematical Foundations of Quantum Mechanics,translated by E. T. Beyer (Princeton University Press, Princeton, 1955)].

    Google Scholar 

  39. Quantum Theory and Measurement,edited by J. A. Wheeler and W. H. Zurek (Princeton University Press, 1983); B. d’Espagnat, Conceptual Foundations of Quantum Mechanics(Benjamin, 1971); P. Busch, P. J. Lahti and P. Mittelstaedt, The quantum theory of measurement(Springer-Verlag, Berlin, 1991); Zurek, Phys. Today, 44, 36 (1991)

    Google Scholar 

  40. M. Namiki and S. Pascazio, Phys. Rep., 232,301 (1993).

    Article  MathSciNet  Google Scholar 

  41. G. C. Ghirardi, C. Omero, T. Weber, and A. Rimini, Nuovo Cim., A52,421 (1979)

    Article  Google Scholar 

  42. A. Venugopalan and R. Ghosh, Phys. Lett., A204,11 (1995)

    Google Scholar 

  43. A. Pati, Phys. Lett., A215,7 (1996).

    Google Scholar 

  44. H. Nakazato, M. Namiki, S. Pascazio and H. Rauch, Phys. Lett., A199,27 (1995); Z. Hradil, H. Nakazato, M. Namiki, S. Pascazio, and H. Rauch, “Infinitely frequent measurements and quantum Zeno effect,” submitted for publication to Phys. Lett. A.

    Google Scholar 

  45. P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. Kasevich, Phys. Rev. Lett., 74, 4763 (1995).

    Article  Google Scholar 

  46. F. Tasset, Physica B, 213&214, 935 (1995).

    Article  Google Scholar 

  47. E. Mihokova, S. Pascazio, and L. S. Schulman, “Hindered decay: Quantum Zeno effect through electromagnetic field domination,” to appear in Phys. Rev. A.

    Google Scholar 

  48. L. S. Schulman, J. Phys., A30,L293 (1997); “Continuous and pulsed observations in the quantum Zeno effect,” preprint 1997; B. Gaveau and L. S. Schulman, J. Stat. Phys., 58,1209 (1990); J. Phys., A28,7359 (1995)

    Article  MathSciNet  Google Scholar 

  49. L. S. Schulman, A. Ranfagni, and D. Mugnai, Phys. Scr., 49,536 (1994).

    Article  Google Scholar 

  50. C. Bernardini, L. Maiani, and M. Testa, Phys. Rev. Lett., 71, 2687 (1993).

    Article  Google Scholar 

  51. M. Namiki, H. Nakazato, and S. Pascazio, “Time symmetry and quantum dephas-ing,” contribution to this volume.

    Google Scholar 

  52. H. Araki, Y. Munakata, M. Kawaguchi, and T. Goto, Prog. Theor. Phys., 17, 419 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  53. J. Schwinger, Ann. Phys., 9, 169 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  54. G. Höhler, Z. Phys., 152,546 (1958).

    Article  MATH  Google Scholar 

  55. T. D. Lee, Phys. Rev., 95,1329 (1954).

    Article  MATH  Google Scholar 

  56. P. L. Knight and P.W. Milonni, Phys. Lett., 56A,275 (1976).

    Google Scholar 

  57. P. Facchi and S. Pascazio, “Temporal behavior and quantum Zeno region of an excited state of the hydrogen atom,” preprint 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pascazio, S., Nakazato, H., Namiki, M. (1998). Temporal Behavior of Quantum Systems and Quantum Zeno Effect. In: Gruber, B., Ramek, M. (eds) Symmetries in Science X. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1537-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1537-5_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1539-9

  • Online ISBN: 978-1-4899-1537-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics