Real-Time Rheed Studies of Epitaxial Co-Cr Superlattices

  • D. Barlett
  • W. Vavra
  • S. Elagoz
  • G. Uher
  • Roy Clarke
Part of the NATO ASI Series book series (NSSB, volume 309)

Abstract

The epitaxial growth1,2 of a bcc form of cobalt, on (110) GaAs, has stimulated a great deal of interest in metastable phases of the magnetic transition metal elements. An issue of general importance in this kind of system concerns the accommodation of lattice mismatch, including possible differences in symmetry, at the heterostructure interfaces. The resulting interface structure is known to play a crucial role in the magnetic properties of such materials, especially with regard to anisotropy3, interlayer coupling,4,5 and giant magnetoresistance effects6.

Keywords

Cobalt Coherence GaAs Azimuth Supersaturation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Prinz, Phys. Rev. Lett. 54, 1051 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    Y. U. Idzerda, W. T. Elam, B. T. Jonker, and G. A. Prinz, Phys. Rev. Lett. 62, 2480 (1989).ADSCrossRefGoogle Scholar
  3. 3.
    U. Gradmann, J. Mag. Mater. 54–57, 733 (1986).ADSCrossRefGoogle Scholar
  4. 4.
    P. Grunberg, J. Appl. Phys. 57, 3673 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    J. C. Slonzewski, Phys. Rev. Lett. 67, 3172 (1991).ADSCrossRefGoogle Scholar
  6. 6.
    M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).ADSCrossRefGoogle Scholar
  7. 7.
    D. Barlett, C. W. Snyder, B. G. Orr, and Roy Clarke, Rev. Sci. Instrum. 62, 1263 (1991).ADSCrossRefGoogle Scholar
  8. 8.
    See R. Clarke, F. J. Lamelas and S. Elagoz, in this volume.Google Scholar
  9. 9.
    C. W. Snyder, D. Barlett, B. .G. Orr, P. K. Bhattacharya, and J. Singh, J. Vac. Sci. Techol. B 9, 2189 (1991).CrossRefGoogle Scholar
  10. 10.
    L. A. Bruce and H. Jaeger, Philos. Mag. A 38, 223 (1978).ADSCrossRefGoogle Scholar
  11. 11.
    E. Bauer and J. H. van der Merwe, Phys. Rev. B 33, 3657 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    R. Ramirez, A. Rahman, and I. K. Schuller, Phys. Rev. B 30, 6208 (1984).ADSCrossRefGoogle Scholar
  13. 13.
    S. Stoyanov, Surface Sci. 172, 198 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    S. Andrieu, M. F. Ravet, O. Lenoble, V. Depuis, M. Piecuch, S. Pizzini, F. Baudelet and A. Fontaine, Europhys. Lett. 18, 529 (1992); see also M. Piecuch et. al. in this proceedings.Google Scholar
  15. 15.
    P. Grunberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers, Phys. Rev. Lett. 57, 2442 (1986).ADSCrossRefGoogle Scholar
  16. 16.
    Jian-hua Xu, A. J. Freeman, T. Jarlborg, and M. B. Brodsky, Phys. Rev. B 29, 1250 (1984).ADSCrossRefGoogle Scholar
  17. 17.
    D. A. Papaconstantopoulos, J. L. Fry, and N. E. Brener, Phys. Rev. B 39, 2526 (1989).ADSCrossRefGoogle Scholar
  18. 18.
    Y. Wang, P. M. Levy, and J. L. Fry, Phys. Rev. Lett. 65, 2732 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • D. Barlett
    • 1
  • W. Vavra
  • S. Elagoz
  • G. Uher
  • Roy Clarke
  1. 1.Applied Physics Program, Department of Physics, Randall LaboratoryUniversity of MichiganAnn ArborUSA

Personalised recommendations