On the Structural Quality of Co/Cu Trilayers and Superlattices: The Influence of the Template Layer

  • A. Cebollada
  • J. de la Figuera
  • A. L. Vázquez de Parga
  • C. Ocal
  • R. Miranda
Part of the NATO ASI Series book series (NSSB, volume 309)


Structural imperfections and chemical intermixing can strongly influence the magnetic properties of metallic superlattices. Co/Cu multilayers grown by sputtering on Si(100) and Si(111) substrates with intermediate seed layers (Cu, Fe, Ru) have been found to display oscillatory MR effects. It has been claimed that the structural quality of multilayers grown on seed layers is high and, in particular, that a 50 Å thick Fe buffer layer provides a template for growth as good as a Cu(100) single crystal [1]. In this work we report on extensive characterization by several diffraction techniques of the detailed crystallography, degree of intermixing and interfacial roughness of Co/Cu trilayers and superlattices grown by MBE on Cu(100) substrates under UHV conditions. Neutron and X-ray diffraction (for superlattices) and LEED (for trilayers) experimental data are compared to detailed calculations (kinematic and dynamic) of the diffracted intensities. On the other hand, the degree of perfection of Fe overlayers deposited on Si wafers and the extent of chemical reaction that takes place at the Fe/Si are also characterized. The data demonstrate that the buffer layers deposited on Si that we have studied represent a template of much lower crystalline quality than Cu single crystals for further growth of Co/Cu superlattices.


Seed Layer Misfit Dislocation Sharp Interface Superlattice Peak Template Layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. S. P. Parkin, Z. G. Li and D. L. Smith,Appl. Phys. Lett.58(1991) 2710.ADSCrossRefGoogle Scholar
  2. [2]
    J. J. de Miguel, A. Cebollada, J. M. Gallego, R. Miranda, C. M. Schneider, P. Schuster and J. Kirschner,J. Magn. Mag. Mat. 93(1991) 1, and references therein.Google Scholar
  3. [3]
    A. Cebollada, J. L. Martinez, J. M. Gallego, J. J. de Miguel, R. Miranda, S. Ferrer, F. Batallán, G. Fillion and J. P. Rebouillat,Phys. Rev. B 39(1989) 9726.ADSCrossRefGoogle Scholar
  4. [4]
    Y. Fujii, T. Ohmishi, T. Ishihara, Y. Yamada, K. Kawaguchi, N. Nakayama and T. Shinjo,J. of the Physical Soc. of Japan 55(1986) 251.ADSCrossRefGoogle Scholar
  5. [5]
    V. F. Sears, “Thermal Nautron Scattering Lengths and Cross Sections for Condensed Matter Research”, Chalk River Nuclear Laboratory, Ontario (1984).Google Scholar
  6. [6]
    G. E. Bacon, “Neutron Diffraction”, Oxford University Press (1975).Google Scholar
  7. [7]
    See for example M. A. van Hove, W. H. Weinberg and C. M. Chan clhjdf in “Low Energy Electron Diffraction”, edited by G. Ertl and R. Gomer, Springer Verlag (Berlin) 1986.CrossRefGoogle Scholar
  8. [8]
    J. B. Pendry, J. Phys.C13(1980) 937.ADSGoogle Scholar
  9. [9]
    E. Navas et. al. (in preparation).Google Scholar
  10. [10]
    D. Chandersis et. al. (this issue).Google Scholar
  11. [11]
    A. Ishizaka and Y. Shiraki, J. Electrochem. Soc.133(1986) 666.CrossRefGoogle Scholar
  12. [12]
    J. de la Figuera, A. L. Vazquez de Parga, J. Alvarez, J. Ibánez, C. Ocal and R. Miranda, Surf. Sci.264(1992) 45.CrossRefGoogle Scholar
  13. [13]
    J. L. Martinez-Albertos et. al. ,J. Magn. Mag. Mat.(submitted).Google Scholar
  14. [14]
    A. E. Berkowitz et. al. ,Phys. Rev. Lett.68(1992) 3745ADSCrossRefGoogle Scholar
  15. [14a]
    J. Q. Xiao et. al. ,Phys. Rev. Lett.68(1992) 3749.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • A. Cebollada
    • 1
  • J. de la Figuera
    • 1
  • A. L. Vázquez de Parga
    • 1
  • C. Ocal
    • 1
  • R. Miranda
    • 1
  1. 1.Dpto. de Física de la Materia CondensadaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations