The Operator Algebra of the Discrete State Operators in 2D Gravity with Non-Vanishing Cosmological Constant

  • Vladimir S. Dotsenko
Part of the NATO ASI Series book series (NSSB, volume 310)


The extra discrete physical states in the 2D gravity coupled to matter have been a subject of a number of recent studies. Their existance had been observed in the matrix model approach [1] for C = 1 theory, and they have been defined in the continuum theory and further analyzed in [2, 3, 4, 5, 6, 7], for more general class of theories.


Operator Algebra Operator Product Expansion Ghost Number Chiral Operator Symmetric Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. J. Gross, I. R. Klebanov and M. J. Newman, Nucl.Phys. B350 (1991) 621MathSciNetADSCrossRefGoogle Scholar
  2. D. J. Gross, I. R. Klebanov, Nucl.Phys. B352 (1991) 671ADSCrossRefGoogle Scholar
  3. [2]
    B. Lian and G. Zuckerman, Phys.Lett. 254B (1991) 417MathSciNetzbMATHGoogle Scholar
  4. [3]
    A.M.Polyakov, Mod.Phys.Lett. A6 (1991). 635MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. [4]
    C. Imbimbo, S. Mahapatra, and S. Mukhi, Preprint GEF-TH 8/91, TIFR/TH/91–27, May 1991Google Scholar
  6. [5]
    P. Bouwknegt, J. McCarthy, and K. Pilch, Preprint CERN-TH. 6162 /91, July 1991Google Scholar
  7. [6]
    S. Govindarajan, T. Jayaraman, V. John and P. Majumdar, Preprint IMSc -91/40, December 1991Google Scholar
  8. [7]
    N. Chair, V. K. Dobrev and H. Kanno, Preprint IC/92/17, January 1992Google Scholar
  9. [8]
    E. Witten, Preprint SLAC-PUB-IASSNS-IIEP-91/51, August, 1991Google Scholar
  10. [9]
    I. R. Klebanov and A. M. Polyakov, Mod.Phys.Lett. A6 (1991) 3273MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. [10]
    J. Avan and A. Jevicki, Phys.Lett. 2668 (1991) 35MathSciNetGoogle Scholar
  12. Preprints BROWN-HET-824 and BROWN-HET-839;Google Scholar
  13. D. Mimic, J. Polchinski and Z. Yang, Preprint UTTG-16–91;Google Scholar
  14. G. Moore and N. Seiberg, Preprint RU-91–29, YCTP-P19–91;Google Scholar
  15. S. Das, A. Dhar, G. Mandai and S. Wadia, Preprints IASSNS-HEP-91/52 and 91/72Google Scholar
  16. [11]
    I. R. Klebanov, Mod.Phys.Lett. A7 (1992) 723Google Scholar
  17. [12]
    E. Verlinde, Preprint IASSNS-HEP-92/5, February 1992Google Scholar
  18. [13]
    E. Witten and B. Zwiebach, Preprint SLAC-PUB-IASSNS-HEP-92/2, MITCTP-2057, January 1992Google Scholar
  19. [14]
    M. Bershadsky and D. Kutasov, Preprint PUPT-1315, HUTP-92/A016, April 1992Google Scholar
  20. [15]
    I. R. Klebanov and A. Pasquinucci, Preprint PUPT-1313, April 1992Google Scholar
  21. [16]
    M. Li, Preprint UCSBTH-91–47, October 1991Google Scholar
  22. [17]
    S. Kachru, Preprint PUPT-1305, January 1992Google Scholar
  23. [18]
    J. L. F. Barbon, Preprint CERN-TI-I.6379/92, FTUAM-92–02, January 1992Google Scholar
  24. [19]
    Vl. S. Dotsenko, Preprint PAR-LPTHE 92–4, January 1992Google Scholar
  25. [20] F. David, Mod.Phys.Lett. A3 (1988)
    J. Distler and H. Kawai, Nucl.Phys. B321 (1989) 509MathSciNetADSCrossRefGoogle Scholar
  26. [21]
    D. Friedan, E. Martinec and S. Shenker, Nucl.Phys. B271 (1986) 93MathSciNetADSGoogle Scholar
  27. [22]
    S. Dotsenko and V. A. Fateev, Nucl.Phys. B251 (1985) 691MathSciNetADSCrossRefGoogle Scholar
  28. [23]
    Vl. S. Dotsenko, Adv.Stud. in Pure Math. 16 (1988)123Google Scholar
  29. [24]
    Vl. S. Dotsenko, Preprint PAR-LPTHE 91–52, to be published in Proceedings of Cargèse Summer School, July 15 - July 27 1991Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Vladimir S. Dotsenko
    • 1
    • 2
  1. 1.LPTHE Université Pierre et Marie Curie, Paris VIParis, Cedex 05France
  2. 2.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations