Skip to main content

The Partition Function of 2D String Theory

  • Chapter
Integrable Quantum Field Theories

Part of the book series: NATO ASI Series ((NSSB,volume 310))

  • 227 Accesses

Abstract

We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in 2D string theory. This expression makes manifest relations of the c = 1 system to KP flow and W 1+∞ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Kazakov, Mod. Phys. Lett A4 (1989) 2125.

    Google Scholar 

  2. T. Banks, M.R. Douglas, N. Seiberg, and S. Shenker, Microscopic and macroscopic loops in nonperturbative two dimensional gravity, Phys. Lett. 238B (1990) 279.

    Google Scholar 

  3. M. Douglas, Strings in less than one dimension and the generalized KdV hierarchies, Phys. Lett. 238B (1990) 176.

    Google Scholar 

  4. D.J. Gross and A. Migdal, A nonperturbative treatment of two dimensional quantum gravity, Nucl. Phys. B340 (1990) 333.

    Google Scholar 

  5. R. Dijkgraaf, E. Verlinde, and H. Verlinde, Loop equations and Virasoro constraints in nonperturbative 2d quantum gravity, Nucl. Phys. B348 (1991) 435.

    Google Scholar 

  6. M. Fukuma, H. Kawai, and R. Nakayama, Continuum Schwinger-Dyson equations and universal structures in two-dimensional quantum gravity, Int. Jour. Mod. Phys. A6 (1991) 1385.

    Google Scholar 

  7. M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function,Max-Planck-Institut preprint MPI/91–77.

    Google Scholar 

  8. S. Kharchev, A. Marschakov, A. Mironov, A. Morozov, A. Zabrodin, Unification of all string models with c = 1, Phys. Lett. 275B (1992) 311; Towards unified theory of 2d gravity,Lebedev Institute preprint FIAN/TD-10/91, hepth 9201013; A. Marshakov, On string field theory at c = 1, Lebedev Institute preprint FIAN/TD8/92, hepth 9208022.

    Google Scholar 

  9. R. Dijkgraaf, Intersection theory, integrable hierarchies and topological field theory,IAS preprint IASSNS-HEP-91/91, hepth 9201003.

    Google Scholar 

  10. G. Moore, R. Plesser, and S. Ramgoolam, Exact S-matrix for 2D string theory,Nucl. Phys. B377(1992)143; hepth 9111035

    Google Scholar 

  11. J. Ambjorn, J. Jurkiewicz, and Yu. Makeenko, Multiloop correlators for two-dimensional quantum gravity, Phys. Lett. 251B (1990) 517.

    Google Scholar 

  12. I.K. Kostov, Loop amplitudes for non rational string theories, Phys. Lett. 266B (1991) 317.

    Google Scholar 

  13. E. Martinec, G. Moore, and N. Seiberg, Boundary operators in 2D gravity, Phys. Lett. 263B 190.

    Google Scholar 

  14. G. Moore, N. Seiberg, and M. Staudacher, From loops to states in two-dimensional quantum gravity, Nucl. Phys. B362 (1991) 665.

    Google Scholar 

  15. G. Moore and N. Seiberg, From loops to fields in 2d gravity, Int. Jour. Mod. Phys. A7 (1992) 2601.

    Google Scholar 

  16. G. Moore, Double-scaled field theory at c = 1, Nucl. Phys. B368 (1992) 557.

    Google Scholar 

  17. I.R. Klebanov and D. Lowe, Correlation functions in two-dimensional gravity coupled to a compact scalar field, Nucl. Phys. B363 (1991) 543.

    Google Scholar 

  18. G. Moore and R. Plesser, Classical scattering in 1+1 dimensional string theory,Yale preprint YCTP-P7–92, hepth 9203060, to appear in Phys. Rev. D.

    Google Scholar 

  19. M. Fukuma, H. Kawai, and R. Nakayama, Infinite dimensional grassmannian structure of two-dimensional quantum gravity, Commun Math. Phys. 143 (1992) 371.

    Google Scholar 

  20. R.C. Penner, Commun. Math. Phys. 113 (1987) 299; J. Diff. Geom. 27 (1988) 35.

    Google Scholar 

  21. G. Segal and G. Wilson, Loop groups and equations of KdV type, Publ. Math. I.H.E.S. 61 (1985) 1.

    Google Scholar 

  22. E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transformation groups for soliton equations, RIMS Symp. Nonlinear Integrable Systems—Classical Theory and Quantum Theory ( World Scientific, Singapore, 1983 ).

    Google Scholar 

  23. K. Ueno and K. Takasaki, Toda lattice hierarchy, in Group Representations and Systems of Differential Equations, H. Morikawa Ed., Advanced Studies in Pure Mathematics 4.

    Google Scholar 

  24. C. Itzykson and J.-B. Zuber, Combinatorics of the modular group II: The Kontsevich integrals, Saclay preprint SPHT/92–001, hepth 9201001; Ph. Di Francesco, C. Itzykson and J.-B. Zuber, Polynomial averages in the Kontsevich model,hepth 9206090

    Google Scholar 

  25. See, e.g., E. Witten, The N matrix model and gauged WZW models,IAS preprint IASSNS-HEP-91/26

    Google Scholar 

  26. G. Moore, Gravitational phase transitions and the sine-Gordon model,Yale preprint YCTP-P1–1992, hepth 9203061.

    Google Scholar 

  27. J. Harer and D. Zagier, Invent. Math. 185 (1986) 457.

    Article  MathSciNet  ADS  Google Scholar 

  28. C. Itzykson and J.-B. Zuber, Commun Math. Phys. 134 (1990) 197.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. J. Distler and C. Vafa, Mod. Phys. Lett. A6 (1991) 259; in Random Surfaces and Quantum Gravity,Eds: O. Alvarez et al.

    Google Scholar 

  30. D. Gross and I. Klebanov, One-dimensional string theory on a circle, Nucl. Phys. B344 (1990) 475.

    Google Scholar 

  31. I.M. Gel’fand and L.A. Dikii, Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations, Russian Math. Surveys 30 (1975) 77.

    Google Scholar 

  32. U. Danielsson and D.J. Gross, On the correlation functions of the special operators in c = 1 quantum gravity, Nucl. Phys. B366 (1991) 3.

    Google Scholar 

  33. M.A. Awada and S.J. Sin, Twisted W oe symmetry of the KP hierarchy and the string equation of d = 1 matrix models,Univ. Florida preprint IFT-HEP-90–33; The string difference equation of d = 1 matrix models and Wl+oe symmetry of the KP hierarchy,IFT-HEP-91–3.

    Google Scholar 

  34. D. Minic, J. Polchinski, and Z. Yang, Translation-invariant backgrounds in 1+1 dimensional string theory, Nucl. Phys. B362 (1991) 125.

    Google Scholar 

  35. J. Avan and A. Jevicki, Classical integrability and higher symmetries of collective field theory, Phys. Lett. 266B (1991) 35; Quantum integrability and exact eigenstates of the collective string field theory, Phys. Lett. 272B (1991) 17.

    Google Scholar 

  36. S.R. Das, A. Dhar, G. Mandai, S. R. Wadia, Gauge theory formulation of the c=1 matrix model: symmetries and discrete states,IAS preprint IASSNS-HEP-91/52, hepth 9110021; Bosonization of nonrelativistic fermions and W oe algebra,Mod. Phys. Lett. A7 (1992) 71; A. Dhar, G. Mandal, S. R. Wadia, Classical Fermi fluid and geometric action for c = 1, Preprint IASSNS-HEP-91-89, hepth 9204028; Non-relativistic fermions, coadjoint orbits of w oe and string field theory at c = 1, Preprint TIFR-TH-92–40, hepth 9207011.

    Google Scholar 

  37. E. Witten, Ground ring of two dimensional string theory, Nucl. Phys. B373 (1992) 187.

    Google Scholar 

  38. I.R. Klebanov and A.M. Polyakov, Interaction of discrete states in two-dimensional string theory, Mod. Phys. Lett. A6 (1991) 3273.

    Google Scholar 

  39. D. Kutasov, E. Martinec, and N. Seiberg, Ground rings and their modules in 2d gravity with c = 1 matter, Phys. Lett. 276B (1992) 437.

    Google Scholar 

  40. I. Klebanov, Ward identities in two-dimensional string theory, Mod. Phys. Lett. A7 (1992) 723.

    Google Scholar 

  41. Yoichiro Matsumura, Norisuke Sakai. Yoshiaki Tanii, Interaction of tachyons and discrete states in c = 1 2-d quantum gravity,hepth 9201066

    Google Scholar 

  42. E. Witten and B. Zwiebach, Algebraic structures and differential geometry in 2d string theory, Nucl. Phys. B377 (1992) 55.

    Google Scholar 

  43. E. Verlinde, The master equation of 2D string theory,IAS preprint IASSNS-HEP-92/5, hepth 9202021.

    Google Scholar 

  44. G. Moore, Geometry of the string equation, Comm. Math. Phys. 133 (1990) 261; Matrix models of 2d gravity and isomonodromic deformation, in: Common Trends in Mathematics and Quantum Field Theory Proc. of the 1990 Yukawa International Seminar, Kyoto. Edited by T. Eguchi, T. Inami and T. Miwa. To appear in the Proc. of the Cargese meeting, Random Surfaces, Quantum Gravity and Strings, 1990.

    Google Scholar 

  45. J. Polchinski, Critical Behavior of random surfaces in one dimension, Nucl. Phys. B346 (1990) 253.

    Google Scholar 

  46. N. Seiberg, Notes on quantum liouville theory and quantum gravity,in Common Trends in Mathematics and Quantum Field Theories,Proceedings of the 1990 Yukawa International Seminar, Prog. Theor. Phys. Supp. 102.

    Google Scholar 

  47. D. Kutasov and Ph. DiFrancesco, Phys. Lett. 261B(1991)385; D. Kutasov and Ph. DiFrancesco, World Sheet and Space Time Physics in Two Dimensional (Super) String Theory,Princeton preprint PUPT-1276, hepth 9109005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dijkgraaf, R., Moore, G., Plesser, R. (1993). The Partition Function of 2D String Theory. In: Bonora, L., Mussardo, G., Schwimmer, A., Girardello, L., Martellini, M. (eds) Integrable Quantum Field Theories. NATO ASI Series, vol 310. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1516-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1516-0_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1518-4

  • Online ISBN: 978-1-4899-1516-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics