Skip to main content

Quantum Integrability and Exact S-Matrices for Affine Toda Theories

  • Chapter
Integrable Quantum Field Theories

Part of the book series: NATO ASI Series ((NSSB,volume 310))

  • 220 Accesses

Abstract

The study of perturbed two-dimensional conformal theories has attracted recently much attention. Following the suggestion of A.B. Zamolodchikov [1] it has become clear that a way to obtain information about the off-critical theories is to apply perturbation theory around their ultraviolet fixed points. In general the perturbation of a conformal field theory will induce a renormalization group flow from the initial (ultraviolet) fixed point to either a) a new (infrared) fixed point where the model is again conformal invariant (Zamolodchikov c-theorem [2]), or, b) a flow to a system with finite correlation length. In particular it has been suggested that for certain classes of perturbations some of these models may possess an infinite number of conserved currents and therefore retain the integrability properties they have at their fixed, conformal points. In more than two dimensions the Coleman-Mandula theorem [3] forces a theory with higher-spin conserved currents to have a trivial S-matrix. In two dimensions this is not true, however the presence of higher-spin charges which commute with the S-matrix has a profound effect on the structure of the scattering amplitudes of these theories: the n-particle S-matrices factorize into a product of elastic two-particle S-matrices which can be determined exactly using unitarity and a bootstrap principle [4]. Therefore in these cases, by studying perturbed conformal field theories one can find all the on-shell informations of the massive theory which are encoded in the S-matrix. The integrals of motion and the S-matrices determined in the conformal field theory approach were recognized as characteristic of a class of two-dimensional field theories known as Toda theories [5]. The basic properties of a Toda system stem from an underlying Lie algebraic construction and depending on whether the algebra is affine or not, the resulting theory is massive or conformally invariant respectively. Thus an affine Toda theory obtained from the corresponding Toda theory by affinizing the Lie algebra can be interpreted as the integrable deformation of a conformal field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.B. Zamolodchikov, “Integrable Field Theory from Conformal Field Theory”, Proceedings of the Taniguchi Symposium, Kyoto (1988)

    Google Scholar 

  2. A.B. Zamolodchikov, Int. J. Mod. Phys. A3 (1988) 743

    Article  MathSciNet  ADS  Google Scholar 

  3. A.B. Zamolodchikov, Int. J. Mod. Phys. A4 (1989) 4235.

    Article  MathSciNet  ADS  Google Scholar 

  4. A.B. Zamolodchikov, JETP Lett. 43 (1986) 730

    MathSciNet  ADS  Google Scholar 

  5. A.B. Zamolodchikov, Sov. J. Nucl. Phys. 46 (1987) 1090.

    MathSciNet  Google Scholar 

  6. S. Coleman and J.Mandula, Phys. Rev. 159 (1967) 1251.

    Google Scholar 

  7. A.B. Zamolodchikov and Al.B. Zamolodchikov, Ann. Phys. (NY) 120 (1979) 253.

    Article  MathSciNet  ADS  Google Scholar 

  8. V.A. Fateev and A.B. Zamolodchikov, Int. J. Mod. Phys. A5 (1990) 1025

    Google Scholar 

  9. T. Eguchi and S-K. Yang, Phys. Lett. 224B (1989) 373;

    MathSciNet  Google Scholar 

  10. T.J. Hollowood and P. Mansfield, Phys. Lett. 226B (1989) 73.

    MathSciNet  Google Scholar 

  11. J.L. Gervais and A. Neveu, Nucl. Phys. B224 (1983) 329;

    Article  MathSciNet  ADS  Google Scholar 

  12. E. Braaten, T. Curtright, G. Ghandour and C. Thorn, Phys. Lett. 125B (1983) 301;

    Google Scholar 

  13. P. Mansfield, Nucl. Phys. B222 (1983) 419.

    Article  MathSciNet  ADS  Google Scholar 

  14. A.V. Mikhailov, M.A. Olshanetsky and A.M. Peremolov, Comm. Math. Phys. 79 (1981) 473.

    Article  MathSciNet  ADS  Google Scholar 

  15. H.W. Braden, E. Corrigan, P.E. Dorey and R. Sasaki, Phys. Lett. 227B (1989) 441

    MathSciNet  Google Scholar 

  16. H.W. Braden, E. Corrigan, P.E. Dorey and R. Sasaki, Nucl. Phys. B338 (1990) 689.

    Article  MathSciNet  ADS  Google Scholar 

  17. A.N. Leznov and M.V. Saveliev, Comm. Math. Phys. 74 (1980) 111.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. D. Olive and N. Turok, Nucl. Phys. B257 (1985) 277

    Article  MathSciNet  ADS  Google Scholar 

  19. D. Olive and N. Turok, Nucl. Phys. B265 (1986) 469.

    Article  MathSciNet  ADS  Google Scholar 

  20. V.G. Kac, “Infinite dimensional Lie algebras”, Vol. 44, Boston, Birkauser (1983).

    Google Scholar 

  21. G.W. Delius, M.T. Grisaru and D.Zanon, “Quantum conserved currents in affine Toda theories”, to be published in Nucl. Phys. B.

    Google Scholar 

  22. S. Coleman and H.J. Thung, Comm. Math. Phys. 61 (1978) 31;

    Article  MathSciNet  ADS  Google Scholar 

  23. C.J. Goebel, Prog. Theor. Phys. Suppl. 86 (1986) 261;

    Article  ADS  Google Scholar 

  24. H.W. Braden, E. Corrigan, P.E. Dorey and R. Sasaki, Nucl. Phys. B356 (1991) 469.

    Article  MathSciNet  ADS  Google Scholar 

  25. M. Karowski and H.J. Thung, Nucl. Phys. B130 (1977) 295

    Article  ADS  Google Scholar 

  26. M. Karowski, Nucl. Phys. B153 (1979) 244.

    Article  ADS  Google Scholar 

  27. A.E. Arinshtein, V.A. Fateev and A.B. Zamolodchikov, Phys. Lett. 87B (1979) 389.

    Google Scholar 

  28. C. Destri and H.J. de Vega, Phys. Lett. 233B (1989) 336.

    MathSciNet  Google Scholar 

  29. P. Christe and G. Mussardo, Nucl. Phys. B330 (1990) 465

    Article  MathSciNet  ADS  Google Scholar 

  30. P. Christe and G. Mussardo, Int. J. Mod. Phys. A5 (1990) 4581;

    Article  MathSciNet  ADS  Google Scholar 

  31. P.G.O. Freund, T.R. Klassen and E. Melzer, Phys. Lett. B229 (1989) 243.

    MathSciNet  Google Scholar 

  32. H.W. Braden and R. Sasaki, “Affine Toda Perturbation Theory”, YITP/U-91–40 or Edinburgh-/90–91/02.

    Google Scholar 

  33. M.T. Grisaru, S. Penati and D. Zanon, Phys. Lett. 253B (1991) 357.

    MathSciNet  Google Scholar 

  34. G.W. Delius, M.T. Grisaru and D. Zanon, Phys. Lett. 277B (1992) 414

    MathSciNet  Google Scholar 

  35. G.W. Delius, M.T. Grisaru and D. Zanon, Nucl. Phys. B382 (1992) 365.

    Article  MathSciNet  ADS  Google Scholar 

  36. V.G. Kac, Adv. Math. 26 (1977) 8

    Article  MATH  Google Scholar 

  37. V.G. Kac, Adv. Math. 30 (1978) 85;

    Article  MATH  Google Scholar 

  38. J.F. Cornwell, “Group Theory in Physics”, vol. III, Academic Press (1989);

    Google Scholar 

  39. D.A. Leites, M.V. Saviliev and V.V. Serganova, in “Group theoretical methods in Physics”, VNU Science Press (1986);

    Google Scholar 

  40. L. Frappat, A. Sciarrino and P. Sorba, Comm Math. Phys. 121 (1989) 457.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. M.A. Olshanetsky, Comm. Math. Phys. 88 (1983) 63.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. J. Evans and T. Hollowood, Nucl. Phys. B352 (1991) 723.

    Article  MathSciNet  ADS  Google Scholar 

  43. G.W. Delius, M.T. Grisaru, S. Penati and D. Zanon, Phys. Lett. 256B (1991) 164

    MathSciNet  Google Scholar 

  44. G.W. Delius, M.T. Grisaru, S. Penati and D. Zanon, Nucl. Phys. B359 (1991) 125;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. C. Destri, H.J. de Vega and V.A. Fateev, Phys. Lett. 256B (1991) 173.

    MathSciNet  Google Scholar 

  46. A. LeClair, Phys. Lett. 230B (1989) 103;

    MathSciNet  Google Scholar 

  47. B. Bernard and A. LeClair, Nucl. Phys. B340 (1990) 721;

    Article  MathSciNet  ADS  Google Scholar 

  48. N. Reshetikhin and F.A. Smirnov, “Hidden quantum group symmetry and integrable perturbations of conformal field theories”, HUTMP89/B246 (1989);

    Google Scholar 

  49. F.A. Smirnov, Int. J. Mod. Phys. A4 (1989) 4213

    Article  ADS  Google Scholar 

  50. F.A. Smirnov, Nucl. Phys. B337 (1990) 156.

    Article  ADS  Google Scholar 

  51. T. Hollowood, “Quantum solitons in affine Toda field theories”, PUPT-1286 (1991).

    Google Scholar 

  52. S. Penati and D. Zanon, “Supersymmetric, integrable Toda field theories: the B(1,1) model”, Phys. Lett. B288 (1992) 297;

    MathSciNet  Google Scholar 

  53. A. Gualzetti, S. Penati and D. Zanon, “Quantum conserved currents in supersymmetric Toda field theories”, (1992) to be published in Nucl. Phys. B.

    Google Scholar 

  54. H.C. Liao, D. Olive, N. Turok, “Topological solitons in A, afine Toda theory”, Imperial/TP/91–92/34 (1992).

    Google Scholar 

  55. K. Aoki and E. D’Hocker, “W-gravity and generalized Lax equations for (super)Toda theory”, UCLA/92/TEP/12 (1992).

    Google Scholar 

  56. R.J. Baxter, Ann. Phys. 70 (1972) 193.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zanon, D. (1993). Quantum Integrability and Exact S-Matrices for Affine Toda Theories. In: Bonora, L., Mussardo, G., Schwimmer, A., Girardello, L., Martellini, M. (eds) Integrable Quantum Field Theories. NATO ASI Series, vol 310. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1516-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1516-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1518-4

  • Online ISBN: 978-1-4899-1516-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics