Quantum Integrability and Exact S-Matrices for Affine Toda Theories

  • D. Zanon
Part of the NATO ASI Series book series (NSSB, volume 310)


The study of perturbed two-dimensional conformal theories has attracted recently much attention. Following the suggestion of A.B. Zamolodchikov [1] it has become clear that a way to obtain information about the off-critical theories is to apply perturbation theory around their ultraviolet fixed points. In general the perturbation of a conformal field theory will induce a renormalization group flow from the initial (ultraviolet) fixed point to either a) a new (infrared) fixed point where the model is again conformal invariant (Zamolodchikov c-theorem [2]), or, b) a flow to a system with finite correlation length. In particular it has been suggested that for certain classes of perturbations some of these models may possess an infinite number of conserved currents and therefore retain the integrability properties they have at their fixed, conformal points. In more than two dimensions the Coleman-Mandula theorem [3] forces a theory with higher-spin conserved currents to have a trivial S-matrix. In two dimensions this is not true, however the presence of higher-spin charges which commute with the S-matrix has a profound effect on the structure of the scattering amplitudes of these theories: the n-particle S-matrices factorize into a product of elastic two-particle S-matrices which can be determined exactly using unitarity and a bootstrap principle [4]. Therefore in these cases, by studying perturbed conformal field theories one can find all the on-shell informations of the massive theory which are encoded in the S-matrix. The integrals of motion and the S-matrices determined in the conformal field theory approach were recognized as characteristic of a class of two-dimensional field theories known as Toda theories [5]. The basic properties of a Toda system stem from an underlying Lie algebraic construction and depending on whether the algebra is affine or not, the resulting theory is massive or conformally invariant respectively. Thus an affine Toda theory obtained from the corresponding Toda theory by affinizing the Lie algebra can be interpreted as the integrable deformation of a conformal field theory.


Conformal Field Theory Coxeter Number Toda Theory Coupling Constant Dependence Fermionic Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.B. Zamolodchikov, “Integrable Field Theory from Conformal Field Theory”, Proceedings of the Taniguchi Symposium, Kyoto (1988)Google Scholar
  2. A.B. Zamolodchikov, Int. J. Mod. Phys. A3 (1988) 743MathSciNetADSCrossRefGoogle Scholar
  3. A.B. Zamolodchikov, Int. J. Mod. Phys. A4 (1989) 4235.MathSciNetADSCrossRefGoogle Scholar
  4. [2]
    A.B. Zamolodchikov, JETP Lett. 43 (1986) 730MathSciNetADSGoogle Scholar
  5. A.B. Zamolodchikov, Sov. J. Nucl. Phys. 46 (1987) 1090.MathSciNetGoogle Scholar
  6. [3]
    S. Coleman and J.Mandula, Phys. Rev. 159 (1967) 1251.Google Scholar
  7. [4]
    A.B. Zamolodchikov and Al.B. Zamolodchikov, Ann. Phys. (NY) 120 (1979) 253.MathSciNetADSCrossRefGoogle Scholar
  8. [5]
    V.A. Fateev and A.B. Zamolodchikov, Int. J. Mod. Phys. A5 (1990) 1025Google Scholar
  9. T. Eguchi and S-K. Yang, Phys. Lett. 224B (1989) 373;MathSciNetGoogle Scholar
  10. T.J. Hollowood and P. Mansfield, Phys. Lett. 226B (1989) 73.MathSciNetGoogle Scholar
  11. [6]
    J.L. Gervais and A. Neveu, Nucl. Phys. B224 (1983) 329;MathSciNetADSCrossRefGoogle Scholar
  12. E. Braaten, T. Curtright, G. Ghandour and C. Thorn, Phys. Lett. 125B (1983) 301;Google Scholar
  13. P. Mansfield, Nucl. Phys. B222 (1983) 419.MathSciNetADSCrossRefGoogle Scholar
  14. [7]
    A.V. Mikhailov, M.A. Olshanetsky and A.M. Peremolov, Comm. Math. Phys. 79 (1981) 473.MathSciNetADSCrossRefGoogle Scholar
  15. [8]
    H.W. Braden, E. Corrigan, P.E. Dorey and R. Sasaki, Phys. Lett. 227B (1989) 441MathSciNetGoogle Scholar
  16. H.W. Braden, E. Corrigan, P.E. Dorey and R. Sasaki, Nucl. Phys. B338 (1990) 689.MathSciNetADSCrossRefGoogle Scholar
  17. [9]
    A.N. Leznov and M.V. Saveliev, Comm. Math. Phys. 74 (1980) 111.MathSciNetADSMATHCrossRefGoogle Scholar
  18. [10]
    D. Olive and N. Turok, Nucl. Phys. B257 (1985) 277MathSciNetADSCrossRefGoogle Scholar
  19. D. Olive and N. Turok, Nucl. Phys. B265 (1986) 469.MathSciNetADSCrossRefGoogle Scholar
  20. [11]
    V.G. Kac, “Infinite dimensional Lie algebras”, Vol. 44, Boston, Birkauser (1983).Google Scholar
  21. [12]
    G.W. Delius, M.T. Grisaru and D.Zanon, “Quantum conserved currents in affine Toda theories”, to be published in Nucl. Phys. B.Google Scholar
  22. [13]
    S. Coleman and H.J. Thung, Comm. Math. Phys. 61 (1978) 31;MathSciNetADSCrossRefGoogle Scholar
  23. C.J. Goebel, Prog. Theor. Phys. Suppl. 86 (1986) 261;ADSCrossRefGoogle Scholar
  24. H.W. Braden, E. Corrigan, P.E. Dorey and R. Sasaki, Nucl. Phys. B356 (1991) 469.MathSciNetADSCrossRefGoogle Scholar
  25. [14]
    M. Karowski and H.J. Thung, Nucl. Phys. B130 (1977) 295ADSCrossRefGoogle Scholar
  26. M. Karowski, Nucl. Phys. B153 (1979) 244.ADSCrossRefGoogle Scholar
  27. [15]
    A.E. Arinshtein, V.A. Fateev and A.B. Zamolodchikov, Phys. Lett. 87B (1979) 389.Google Scholar
  28. [16]
    C. Destri and H.J. de Vega, Phys. Lett. 233B (1989) 336.MathSciNetGoogle Scholar
  29. P. Christe and G. Mussardo, Nucl. Phys. B330 (1990) 465MathSciNetADSCrossRefGoogle Scholar
  30. P. Christe and G. Mussardo, Int. J. Mod. Phys. A5 (1990) 4581;MathSciNetADSCrossRefGoogle Scholar
  31. P.G.O. Freund, T.R. Klassen and E. Melzer, Phys. Lett. B229 (1989) 243.MathSciNetGoogle Scholar
  32. [17]
    H.W. Braden and R. Sasaki, “Affine Toda Perturbation Theory”, YITP/U-91–40 or Edinburgh-/90–91/02.Google Scholar
  33. [18]
    M.T. Grisaru, S. Penati and D. Zanon, Phys. Lett. 253B (1991) 357.MathSciNetGoogle Scholar
  34. [19]
    G.W. Delius, M.T. Grisaru and D. Zanon, Phys. Lett. 277B (1992) 414MathSciNetGoogle Scholar
  35. G.W. Delius, M.T. Grisaru and D. Zanon, Nucl. Phys. B382 (1992) 365.MathSciNetADSCrossRefGoogle Scholar
  36. [20]
    V.G. Kac, Adv. Math. 26 (1977) 8MATHCrossRefGoogle Scholar
  37. V.G. Kac, Adv. Math. 30 (1978) 85;MATHCrossRefGoogle Scholar
  38. J.F. Cornwell, “Group Theory in Physics”, vol. III, Academic Press (1989);Google Scholar
  39. D.A. Leites, M.V. Saviliev and V.V. Serganova, in “Group theoretical methods in Physics”, VNU Science Press (1986);Google Scholar
  40. L. Frappat, A. Sciarrino and P. Sorba, Comm Math. Phys. 121 (1989) 457.MathSciNetADSMATHCrossRefGoogle Scholar
  41. [21]
    M.A. Olshanetsky, Comm. Math. Phys. 88 (1983) 63.MathSciNetADSMATHCrossRefGoogle Scholar
  42. [22]
    J. Evans and T. Hollowood, Nucl. Phys. B352 (1991) 723.MathSciNetADSCrossRefGoogle Scholar
  43. [23]
    G.W. Delius, M.T. Grisaru, S. Penati and D. Zanon, Phys. Lett. 256B (1991) 164MathSciNetGoogle Scholar
  44. G.W. Delius, M.T. Grisaru, S. Penati and D. Zanon, Nucl. Phys. B359 (1991) 125;MathSciNetADSMATHCrossRefGoogle Scholar
  45. C. Destri, H.J. de Vega and V.A. Fateev, Phys. Lett. 256B (1991) 173.MathSciNetGoogle Scholar
  46. [24]
    A. LeClair, Phys. Lett. 230B (1989) 103;MathSciNetGoogle Scholar
  47. B. Bernard and A. LeClair, Nucl. Phys. B340 (1990) 721;MathSciNetADSCrossRefGoogle Scholar
  48. N. Reshetikhin and F.A. Smirnov, “Hidden quantum group symmetry and integrable perturbations of conformal field theories”, HUTMP89/B246 (1989);Google Scholar
  49. F.A. Smirnov, Int. J. Mod. Phys. A4 (1989) 4213ADSCrossRefGoogle Scholar
  50. F.A. Smirnov, Nucl. Phys. B337 (1990) 156.ADSCrossRefGoogle Scholar
  51. [25]
    T. Hollowood, “Quantum solitons in affine Toda field theories”, PUPT-1286 (1991).Google Scholar
  52. [26]
    S. Penati and D. Zanon, “Supersymmetric, integrable Toda field theories: the B(1,1) model”, Phys. Lett. B288 (1992) 297;MathSciNetGoogle Scholar
  53. A. Gualzetti, S. Penati and D. Zanon, “Quantum conserved currents in supersymmetric Toda field theories”, (1992) to be published in Nucl. Phys. B.Google Scholar
  54. [27]
    H.C. Liao, D. Olive, N. Turok, “Topological solitons in A, afine Toda theory”, Imperial/TP/91–92/34 (1992).Google Scholar
  55. [28]
    K. Aoki and E. D’Hocker, “W-gravity and generalized Lax equations for (super)Toda theory”, UCLA/92/TEP/12 (1992).Google Scholar
  56. [29]
    R.J. Baxter, Ann. Phys. 70 (1972) 193.MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • D. Zanon
    • 1
    • 2
  1. 1.Dipartimento di FisicaUniversità di MilanoMilanoItaly
  2. 2.Sezione di MilanoINFNMilanoItaly

Personalised recommendations