Skip to main content

Abstract

Fibers are unique units of biological tissues, mineral habits, or spinning processes; examples include muscle and nerve fibers, wool, fur, hair, cotton, linen, natural silk, natural and regenerated cellulose, asbestos, spun silicate glass, and man-made polymeric fibers. Although fibers vary widely in chemical nature, they are physically alike, being much longer than wide, very strong for their small cross sections, and anisotropic. The microscopically determinative properties of fibers are both morphological and structural. The distinctive morphology of a fiber type includes sizes and shapes in both longitudinal and cross-sectional views.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASTM designation D276, “Identification of Textile Fibers,” in Annual Book of ASTM Standards ( Philadelphia: American Society for Testing and Materials, 1991 ).

    Google Scholar 

  2. AATCC Test Method, Fibers in Textiles: Identification,“ AATCC Technical Manual (Research Triangle Park, NC: American Association of Textile Chemists and Colorists, 1993 and annually).

    Google Scholar 

  3. P. A. Tucker, “Fibers,” in Encyclopedia of Polymer Science and Engineering, 2d ed. ( New York: Wiley, 1987 ).

    Google Scholar 

  4. A. C. Reimschuessel, “Scanning Electron Microscopy,” J. Chemical Education 49 (1974), A413 - A449.

    Article  Google Scholar 

  5. Scanning electron micrographs by the Shirley Institute via the British Technology Group, Manchester, England.

    Google Scholar 

  6. 6. Guide to the Care of Trademarks,U.S. Trademark Association, 6 East 45th St., New York, NY 10017.

    Google Scholar 

  7. C. W. Mason, Handbook of Chemical Microscopy, Vol. 1: Physical Methods, 4th ed. ( New York: Wiley, 1983 ).

    Google Scholar 

  8. M. A. Sieminski, “The Temperature for Zero Birefringence of Arnel® and Other Fibers,” Textile Research Journal 34 (1964), 918–24.

    Article  Google Scholar 

  9. M. A. Sieminski, “A Note on the Measurement of Birefringence in Fibers,” The Microscope 23 (1975), 35–36.

    Google Scholar 

  10. R. W. Singleton et al.,“The Effect of Radial Heterogeneity on Fiber Properties,” Textile Research Journal 31 (1961), 917–25.

    Google Scholar 

  11. E. Leitz, Instructions for Tilting Compensator K ( Rockleigh, NJ: E. Leitz, 1971 ).

    Google Scholar 

  12. 11. Index to Annual ASTM Standards (Philadelphia: American Society for Testing and Materials, 1993).

    Google Scholar 

  13. N. H. Hartshorne and A. Stuart, Crystals and the Polarising Microscope, 4th ed. ( London: Edward Arnold, 1970 ).

    Google Scholar 

  14. T. G. Rochow and R. L. Gilbert, “Resinography,” in vol. 5 of Protective and Decorative Coatings, J. J. Mattiello, ed. ( New York: Wiley, 1946 ).

    Google Scholar 

  15. C. P. Saylor, “Heterodoxy in Refractive Index Measurement,” NYMS Dialogues, May 17-19, 1977, New York Microscopical Society, American Museum of Natural History, New York, NY 10024.

    Google Scholar 

  16. Cargille Scientific, Inc., 55 Commerce Rd., Cedar Grove, NJ 07009, for example.

    Google Scholar 

  17. N. H. Hartshorne, The Microscopy of Liquid Crystals ( Chicago: Microscope Publications, 1974 ).

    Google Scholar 

  18. R. G. Scott, “A Few Observations Concerning the Structure of Synthetic Fibers,” ASTM Symposium on Microscopy, F. F. Morehead and R. Loveland, eds., ASTM Special Technical Publication 257 ( Philadelphia: American Society for Testing and Materials, 1959 ).

    Google Scholar 

  19. Federal Trade Commission, “Rules and Regulations under the Textile Fiber Products Identification Act,” March 3, 1969, Federal Trade Commission, Washington, DC 20580.

    Google Scholar 

  20. A. O. Mogensen, “Microscopical Apparatus and Techniques for Observing the Fiber-Forming Process,” in Resinographic Methods, ASTM Special Technical Publication 348 ( Philadelphia: American Society for Testing and Materials, 1964 ), 31–35.

    Google Scholar 

  21. T. G. Rochow, Light Microscopical Resinography ( Chicago: McCrone Research Institute, 1983 ), 48.

    Google Scholar 

  22. T. G. Rochow et al.,“Transverse Anisotropy in False. Twist Textured Nylon 66 and Its Characterization with the Universal Stage,” The Microscope 28 (1980), 129–140.

    Google Scholar 

  23. F. D. Bloss, The Spindle Stage ( Cambridge, UK: Cambridge University Press, 1981 ).

    Google Scholar 

  24. T. G. Rochow and E. G. Rochow, Resinography ( New York: Plenum, 1976 ).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rochow, T.G., Tucker, P.A. (1994). Microscopical Properties of Fibers. In: Introduction to Microscopy by Means of Light, Electrons, X Rays, or Acoustics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1513-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1513-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1515-3

  • Online ISBN: 978-1-4899-1513-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics