Advertisement

Abstract

This chapter will review the physical principles of confocal scanning microscopy. The ability to modify and improve the optical imaging in these instruments results mainly from adoption of a scanning approach. In this way the only requirement of the optical system is that it should be capable of imaging one point of the object field at any time: the entire field is then built up by scanning. This serial imaging has several advantages over the essentially parallel processing of the conventional microscope. In particular, it provides the image in an ideal form for subsequent image processing and display. A typical scanning system and computer interface is shown in Fig. 7.1.

Keywords

Point Spread Function Numerical Aperture Point Detector Conventional Microscope Depth Discrimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brakenhoff, G. J., van der Voort, H. T. M., van Spronsen, E. A., and Nanninga, N. (1989). J. Microsc. (Oxford) 153, 151.CrossRefGoogle Scholar
  2. Egger, M. D., and Petran, M. (1967). Science 157, 305.PubMedCrossRefGoogle Scholar
  3. Giniunas, L., Juskaitis, R., and Shatalin, S. V. (1991). Electron. Leu. 27, 724.CrossRefGoogle Scholar
  4. Hamilton, D. K., and Wilson, T. (1981). Opt. Lett. 6, 625.PubMedCrossRefGoogle Scholar
  5. Hamilton, D. K., and Wilson, T. (1982). Appl. Phys. B27, 211.CrossRefGoogle Scholar
  6. Juskaitis, R., and Wilson, T. (1991). Appl. Opt. 31, 898.CrossRefGoogle Scholar
  7. Kimura, S., and Wilson, T. (1991). Appl. Opt. 30, 2143.PubMedCrossRefGoogle Scholar
  8. Lukosz, W. (1966). J. Opt. Soc. Am. 56, 1463.CrossRefGoogle Scholar
  9. Minsky, M. (1961). U.S. Patent No. 3,013, 467.Google Scholar
  10. Pawley, J. (1989). Handbook of Biological Confocal Microscopy, I. M.R. Press, University of Wisconsin.Google Scholar
  11. Sheppard, C. J. R., and Wilson, T. (1981). Appl. Phys. Lett. 38, 858.CrossRefGoogle Scholar
  12. Suziki, T., and Horikawa, Y. (1986). Appl. Opt. 25, 4115.CrossRefGoogle Scholar
  13. Wener, H., and Grasserbauer, M., (1991). Analysis of Microelectronic Materials and Devices,Wiley, New York.Google Scholar
  14. Wilke, W. (1985). Scanning 7, 88.CrossRefGoogle Scholar
  15. Wilson, T. (ed.) (1990). Confocal Microscopy, Academic Press, New York.Google Scholar
  16. Wilson, T., and Carlini, A. R. (1987). Opt. Lett. 12, 227.PubMedCrossRefGoogle Scholar
  17. Wilson, T., and Carlini, A. R. (1988). J. Microsc. (Oxford) 149, 51.CrossRefGoogle Scholar
  18. Wilson, T., and Hamilton, D. K. (1982). J. Microsc. (Oxford) 128 139.Google Scholar
  19. Wilson, T., and Hewlett, S. J. (1989). Int. Phys. Conf. Ser. No. 98, 629.Google Scholar
  20. Wilson, T., and Sheppard, C. J. R. (1984). Theory and Practice of Scanning Optical Microscopy, Academic Press, New York.Google Scholar
  21. Xiao, G. Q., and Kino, G. S. (1987). Proc. SPIE 809, 107.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • T. Wilson
    • 1
  1. 1.Department of Engineering ScienceUniversity of OxfordOxfordEngland

Personalised recommendations