Electron Scattering by Vibrationallly Excited Molecules

  • N. J. Mason
  • W. M. Johnstone
  • P. Akther
Part of the Physics of Atoms and Molecules book series (PAMO)


Electron-molecule collisions have been studied for well over half a century since the earliest experimental work of Ramsauer and Kollath (1930) and theoretical calculations of Stier (1932) and Fisk (1936). The interaction of slow electrons with atoms and molecules (0–20eV) plays an important role in understanding the thermalisation of the ionosphere, the design and operation of lasers and related gas discharges and in plasma etching used in the semiconductor industry. However in both theoretical and experimental studies the target molecule is usually treated as being in its lowest state of excitation (vibrational/rotational, electronic) and our knowledge of the interactions of electrons with excited (energy rich) molecules is extremely limited in spite of its fundamental importance in laser and plasma physics, chemistry, and even the life sciences. The limited data that are available indicate that the cross sections for electron scattering from excited molecular targets may be very different from those for scattering from the corresponding ground state. In this review, we will both discuss the data currently available and suggest future experiments that will provide important new information on this most basic of collision processes.


Vibrational State Vibrational Level Vibrational Excitation Excitation Cross Section Electron Attachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.M. Johnstone, P. Akther, N.J. Mason and W.R. Newell (1993) XVIII ICPEAC, Aarhus, Denmark, Abstracts p.302.Google Scholar
  2. 2.
    M. Allan (1982) Helvet Chim Acta 65 2008CrossRefGoogle Scholar
  3. S.M. Barnett, N.J. Mason and W.R. Newell (1991) Chem. Phys. 153 283CrossRefGoogle Scholar
  4. S.J. Buckman, M.T. Elford and D.S. Newman (1987) J. Phys. B. 20 5175.ADSCrossRefGoogle Scholar
  5. 3.
    S.M. Barnett, N.J. Mason and W.R. Newell (1991) Chem. Phys. 153 283.CrossRefGoogle Scholar
  6. 4.
    R. Celiberto and T.N. Rescigno (1993) Phys. Rev. A. 47 1939.ADSCrossRefGoogle Scholar
  7. 5.
    C.L. Chen and P.J. Chantry (1979) J. Chem. Phys. 71 3897.ADSCrossRefGoogle Scholar
  8. 6.
    A.A. Christodoulides, L.G. Christophorou and D.L. McCorkle (1987) Chem. Phys. Lett. 139 35.CrossRefGoogle Scholar
  9. 7.
    D. Danner, PhD thesis, Physikalisches Institut der Universitat Freiburg.Google Scholar
  10. 8.
    J. Ferch, C. Masche, W. Raith and L. Wieman (1989) Phys. Rev. A. 40 5407.ADSCrossRefGoogle Scholar
  11. 9.
    Fisk (1936) Phys. Rev. A49 169.ADSCrossRefGoogle Scholar
  12. 10.
    W.M. Johnstone, N.J. Mason and W.R. Newell (1993) J. Phys. B. 26 L147.ADSCrossRefGoogle Scholar
  13. 11.
    G. Joyez, J. Comer and F.H. Read (1973) J. Phys. B. 6 2427.ADSCrossRefGoogle Scholar
  14. 12.
    N.J. Mason and W.R. Newell (1993) XVIII ICPEAC, Aarhus, Denmark, Abstracts p.332.Google Scholar
  15. 13.
    Ramsauer P. and Kollath R. (1930) Ann. der Phys. 4 91.ADSCrossRefGoogle Scholar
  16. 14.
    D.F. Register, H. Nishimura and S. Trajmar (1980) J. Phys. B. 13 1651.ADSCrossRefGoogle Scholar
  17. 15.
    S.M. Spryou and L.G. Christophorou (1985) J. Chem. Phys. 82 2620.ADSCrossRefGoogle Scholar
  18. 16.
    Stier (1932) Zeit für Phys. 76 439.ADSCrossRefGoogle Scholar
  19. 17.
    E.C. Zipf (1982) Dissociation of molecules by electron impact. Electron-molecule interactions and their applications, vol 1, eh 4 (Academic Press, New York).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • N. J. Mason
    • 1
  • W. M. Johnstone
    • 1
  • P. Akther
    • 1
  1. 1.Department of Physics and AstronomyUniversity College LondonLondonEngland

Personalised recommendations