The Role of the Autonomic Nervous System in Congestive Heart Failure

  • Gianfranco Piccirillo
  • Carmela Bucca
  • Sabrina Tarantini
  • Elvira Santagada
  • Michele Durante
  • Silvia Remediani
  • Maria Luce Nocco
  • Vincenzo Marigliano


Altered sympathovagal balance could be a substrate for malignant ventricular arrhythmias in congestive heart failure. The aim of this study is to assess neuroautonomic function by power spectral analysis in patients with congestive heart failure and the effects of treatment with Carvedilol in these patients. We compared the LF/HF ratio of all patients at baseline and after sympathetic stress (tilt). In group I, we considered 10 patients with congestive heart failure and 10 controls mean aged 60 years, while in group II were 10 patients with heart failure 70 years old and normal subjects age-matched. In group I, at rest the subjects with congestive heart failure had a significantly greater LF/HF (p<0.001) than controls. In contrast, it increased significantly after tilt in control subjects. In group II, at rest LF/HF did not differ between patients with congestive heart failure and normal subjects, while after tilt it resulted higher in controls (p<0.05). After a month of 25 mg daily of Carvedilol administration in patients with heart failure in group I, both at rest and after tilt, LF/HF was significantly greater in patients in wash-out than treated (p<0.001). In group II there weren’t significant differences both at rest and after tilt. This study showed increase of sympathetic activity in patients with congestive heart failure mean aged 60 years, less evident in patients aged 70 years. Carvedilol can exert beneficial myocardial effects in these patients, because reduces morbidity and mortality and can favorably influence the course of disease and prolong survival.


Heart Failure Congestive Heart Failure Chronic Heart Failure Idiopathic Dilate Cardiomyopathy Power Spectral Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McKee PA, Castelli WP, McNamara PM, Kannel WB. The natural hystory of congestive heart failure. The Framingham Study. N.Engl.J.Med. 1971;285: 1442–6.CrossRefGoogle Scholar
  2. 2.
    Kannel WB, Plehn JF, Cupples LA. Cardiac failure and sudden death in the Framingham Study. Am.Heart J. 1988;115: 869–75.PubMedCrossRefGoogle Scholar
  3. 3.
    Douglas D. Schocken, Martha I Arrieta, PE Leaverton, EA Ross. Prevalence and mortality rate of Congestive heart failure in the United States. J Am Coll Cardiol 1992; 20: 301–6.CrossRefGoogle Scholar
  4. 4.
    Thomas JA, Marks BH. Plasma norepinfrine in congestive heart failure. Am.J.Cardiol 1978;41:233–43.PubMedCrossRefGoogle Scholar
  5. 5.
    Cohn JN, Levine TB, Olivari MT et al. Plasma norepinefrine as a guide to prognosis in patients with chronic congestive heart failure. N.Engl J Med 1984;311:819–823.PubMedCrossRefGoogle Scholar
  6. 6.
    Swedberg K, Hjalmarson A, Waagstein F, Wallentin I. Prolongation of survival in congestive cardiomyopathy by beta-receptor blockade. Lancet 1979; 1:1374–6PubMedCrossRefGoogle Scholar
  7. 7.
    M. Packer, MR Bristow, JN Cohn, WS Colucci, MB Fowler, EM Gilbert, NH Shusterman. The effect of carvedilolon morbidity and mortality in patients with chronic heart failure. N Engl J Med 1996;334:1349–55.PubMedCrossRefGoogle Scholar
  8. 8.
    Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ. Power spectral analysis of heart rate fluctuation: a quantitative probe of heart rate fluctuation: a quantative probe of beat-to-beat cardiovascular control. Science 1981;213:220–222.PubMedCrossRefGoogle Scholar
  9. 9.
    Bonaduce D, Marciano F, Petretta M, Migaux ML, Morgano G, Bianchi V, Salemme L, Valva G, Condorelli M. Effects of converting enzyme inibition on heart period variability in patients with acute myocardial infarction. Circulation 1994; 90:108–113.PubMedCrossRefGoogle Scholar
  10. 10.
    Pomeranz B, Macaulay RJB, Caudill MA, Gordon D, Kilborn KM, Barger AC, Shannon DC, Cohen RJ, Benson H. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Phisiol 1985; 248: H151–H153.Google Scholar
  11. 11.
    Yo Y, Nagano N, Iiyama K, Higaki J, Mikami H, Ogihara T. Effects of age and hypertension on autonomic nervous regulation during passive head-up tilt. Hypertension 1994; 23 (supp I): 1–82–1–86.Google Scholar
  12. 12.
    Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, DellOrto G, Piccaluga E, Tureil M, Baselli G, Cerutti S, Malliani A. Power spectral analysis of heart rate and arterial pressure variability as a marker of sympathovagal interaction in man and conscious dog. Circ. Res. 1986; 59: 178–193.PubMedCrossRefGoogle Scholar
  13. 13.
    Ripley KL, Murray A. Introduction to automated arrhythmia detection. New York TEEE Comp. Society Press, 1980.Google Scholar
  14. 14.
    Kay SM, Marple SL Jr. Spectrum analysis. A modern prospective. Proc. IEEE 1981; 69(11): 1380–1419.CrossRefGoogle Scholar
  15. 15.
    Akaike H. Statistical predictor identification. Ann. Int. Stat. Math. 1970; 22: 203–217.CrossRefGoogle Scholar
  16. 16.
    Zetterberg LH. Estimation of parameters for a linear difference equation with application to EEG analysis. Math Biosci 1969; 5: 227–275.CrossRefGoogle Scholar
  17. 17.
    O’Brien IAD, O’Hare P, Corral RJM. Heart rate variability in healthy subjects: effect of age and the derivation of normal ranges for tests of autonomie function. Br. Heart J. 1986; 55: 348–35?PubMedCrossRefGoogle Scholar
  18. 18.
    Weise F, Heydeinreich F, Runge U. Contribution of sympathetic and vagal mechanisms to genesis of heart rate fluctuation during orthostatic load: a spectral analysis. J. Aut. Nerv. Syst. 1987; 21: 127–134.CrossRefGoogle Scholar
  19. 19.
    Rottmann JN, Steinman RC, Albrecht P, Bigger JT, Jr, Rolnitzky LM, Fleiss JL. Efficient estimation of the heart period power spectrum suitable for physiologic or pharmacologie studies. Am. J. Cardiol. 1990; 66: 1522–1524.CrossRefGoogle Scholar
  20. 20.
    Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991; 84: 482–492.PubMedCrossRefGoogle Scholar
  21. 21.
    Saul JP, Albrecht P, Berger RD, Cohen RJ. Analysis of long term heart rate variability: methods, scaling and implications. IEEE 1988; 88: 409–412.Google Scholar
  22. 22.
    Bigger JT, Fleiss JL, Rolnitzky LM, Steinman RC. The ability of several short-term measures of R-R variability to predict mortality after myocardial infarction. Circulation 1993; 88: 927–934.PubMedCrossRefGoogle Scholar
  23. 23.
    Gottdiener JS, Reda DJ, Matterson BJ, Massie BM, Notargiacomo A, Hamburger RJ, Williams DW, Henderson WG. Importance of obesity, race and age to the cardiac structural and functional effects of hypertension. J Am Coll Cardiol 1994; 24: 1992–1498.Google Scholar
  24. 24.
    Brovelli M, Baselli, Cerutti S. Computerized analysis for an experimental validation of neurophysiological models of heart rate control. In Computers in Cardiology. Silver Spring Md, IEEE Computer Society Press 1983:205-208.Google Scholar
  25. 25.
    Bristow MR, Kantrowitz NE, Ginsburg R, Fowler MB. Beta-adrenergic function in heart muscle disease and heart failure. J Mol Cell Cardiol 1985; 17: 41–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Packer M Neurohormonal interactions and adaptations in congestive heart failure. Circulation 1988; 77: 721–730.PubMedCrossRefGoogle Scholar
  27. 27.
    Feldman AM, Bristow MR. Adrenergic neuroeffector mechanisms in the failing human heart. In: Braunwald E, ed. Clinical Update, 3rd ed. Heart disease. Philadelphia: W.B. Saunders, 1990: 206–216.Google Scholar
  28. 28.
    Lown B, Verrier RL. Neural activity and ventricular fibrillation. N Engl J Med 1976; 294: 1165–70.PubMedCrossRefGoogle Scholar
  29. 29.
    Bristow MR. Pathophysiologic and pharmacologie rationales for clinical management of chronic heart failure with beta-blocking agents. Am J Cardiol 1993; 71: 12C–22C.PubMedCrossRefGoogle Scholar
  30. 30.
    Krum H, Sackner-Bernstein JD, Goldsmith RL. Double-blind placebo-controlled study of the long-term efficacy of Carvedilol in patients with severe chronic heart failure. Circulation 1995; 92: 1499–506.PubMedCrossRefGoogle Scholar
  31. 31.
    Wendt TH, van der Does R. Schrader R, Landgraf H, Kober G. Acute hemodinamic effects of the vasodilating and beta-blocking agent Carvedilol in comparison to Propranolol. J Cardiovasc Pharmacol 1987; 10 (suppl 11): S147–S150.PubMedGoogle Scholar
  32. 32.
    Das Gupta P, Broadhurst P, Lahiri A. The effects of intravenous Carvedilol, a new multiple action vasodilating beta-blocker, in congestive heart failure. J Cardiovascul Pharmacol 1991; 18 (suppl.4): S12–S16.Google Scholar
  33. 33.
    Olsen SL, Gilbert EM, Renlund DG, Mealey PC, Volkman K, O’Connel JB, Yanowitz FD, Bristow MR. Carvedilol improves left ventricular function in idiopathic dilated cardiomyopathy. Circulation 1991; 84: II–564.Google Scholar
  34. 34.
    Olsen SL, Gilbert EM, Renlund DG, Mealey PC, Taylor DO, Volkman AK, Bristow MR Carvedilol improves symptoms and left ventricular function in patients with congestive heart failure due to ischemic or idiopathic dilated cardiomyopathy. J Am Coll Cardiol 1993; 21: 11A.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Gianfranco Piccirillo
    • 1
  • Carmela Bucca
    • 1
  • Sabrina Tarantini
    • 1
  • Elvira Santagada
    • 1
  • Michele Durante
    • 1
  • Silvia Remediani
    • 1
  • Maria Luce Nocco
    • 1
  • Vincenzo Marigliano
    • 1
  1. 1.Istituto di I Clinica Medica, Cattedra di GeriatriaPoliclinico Umberto IRomaItaly

Personalised recommendations