Early Markers of Cardiovascular Damage

  • Giuseppe Licata


Cardiovascular (CV) disease represents at present one of the most frequent causes of morbidity and mortality in western industrialized countries. The prevalence of CV disease is increased in subjects with hypertension (HTN), diabetes mellitus (DM), dyslipidemia and central obesity. In these conditions, it is possible to detect early alterations of metabolic, hormonal, hemostatic, genetic and hemodynamic parameters, frequently associated with morphological and functional modifications of the left ventricle (LV) and the vascular system. Since these changes generally precede and are closely related to the occurrence of CV events, they may be considered early markers of CV disease. In recent years, the study of these parameters as prognostic factors has been facilitated by the introduction of new sensitive laboratory and image methods that allow their accurate quantification. In fact, several studies have investigated specific markers to document the early involvement of the CV system.


Brain Natriuretic Peptide Atrial Natriuretic Peptide Early Marker Atrial Natriuretic Factor Peak Filling Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aronow WS. Left ventricular hypertrophy: significance in cardiac morbidity and mortality. Postgrad Med 1990; 87(4): 147–158.PubMedGoogle Scholar
  2. 2.
    Levy D. Left ventricular hypertrophy: epidemiological insights from the Framingham Heart Study. Drugs 1988; 35(Suppl. 5): 1–5.PubMedGoogle Scholar
  3. 3.
    Devereux RB, Reichek. Echocardiographic determination of left ventricular mass in man: anatomic validation of the method. Circulation 1977; 55: 613–618.PubMedGoogle Scholar
  4. 4.
    Aronow WS, Ahn C, Kronzon I, Koenigsberg M. Congestive heart failure, coronary events and atherothrombotic brain infarction in elderly blacks and whites with systemic hypertension and with and without echocardiographic and electrocardiographic evidence of left ventricular hypertrophy. Am J Cardiol 1991; 67:295–299.PubMedGoogle Scholar
  5. 5.
    Casale PN, Devereux RB, Milner M, et al. Value of echocardiographic measurement of left ventricular mass in predicting cardiovascular morbid events in hypertensive men. Ann Int Med 1986; 105: 173–178.PubMedGoogle Scholar
  6. 6.
    Granger CB, Karimeddini MK, Smith VE, et al. Rapid ventricular filling in left ventricular hypertrophy. I. Physiologic hypertrophy. JACC 1985; 5(4): 862–867.PubMedGoogle Scholar
  7. 7.
    Marcus ML, Koyanayi S, Harison DG, et al. Abnormality in the coronary circulation that occur as a consequence of cardiac hypertrophy. Am J Med 1983; 75 (Suppl. 3A): 62–66.PubMedGoogle Scholar
  8. 8.
    Diegel D, Cheitlin MD, Black DM, et al. Risk of ventricular arrhythmias in hypertensive men with left ventricular hypertrophy. Am J Cardiol 1990; 65: 742–747.Google Scholar
  9. 9.
    Koren MJ, Devereux RB, Casale PN, et al. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Int Med 1991; 114: 345–352.PubMedGoogle Scholar
  10. 10.
    Bonow RO, Bacharach SL, Green MV. Impaired left ventricular diastolic filling in patients with coronary artery disease: Assessment with radionuclide angiography. Circulation 1981; 64: 315–323.PubMedGoogle Scholar
  11. 11.
    Chiddo A, Gaglione A, Locuratolo N, et al. Funzione diastolica e danno anatomico del miocardio nella cardiomiopatia primitiva di tipo dilatativo. Cardiologia 1988; 33(7): 691–696.PubMedGoogle Scholar
  12. 12.
    Caponnetto S, Perocchio N. La funzione diastolica: recenti acquisizioni fisiopatologiche. Cardiologia 1989; 34(10): 829–833.PubMedGoogle Scholar
  13. 13.
    Fouad FM, Slominsky JM, Tarazi RC. Left ventricular diastolic function in hypertension: Relation to left ventricular mass and systolic function. JACC 1984; 3: 1500–1506.PubMedGoogle Scholar
  14. 14.
    Christian TF, Zinsmeister AR, Miller TD, et al. Left ventricular systolic response to exercise in patients with systemic hypertension without left ventricular hypertrophy. Am J Cardiol 1990; 65: 1204–1208.PubMedGoogle Scholar
  15. 15.
    Zachariah PK, Krier JD. Hypertension and ambulatory blood pressure monitoring. Primary Care 1991; 18(3): 651–662.PubMedGoogle Scholar
  16. 16.
    Corrao S, Paterna S, Arnone S, et al. Two-dimensional echocardiographic evaluation of left ventricular ejection fraction by the ellipsoid single-plane algorithm: A reliable method for assessing low or very low ejection fraction values? Cardiology 1995; 86: 503–507.PubMedGoogle Scholar
  17. 17.
    Licata G, Scaglione R, Barbagallo M, et al. Effect of obesity on left ventricular function studied by radionuclide angiocardiography. Int J Obesity 1991; 15: 295–302.Google Scholar
  18. 18.
    Licata G, Scaglione R, Paterna S, et al. Left ventricular function response to exercise in normotensive obese subjects: influence of degree and duration of obesity. Int J Cardiol 1992; 37: 223–230.PubMedGoogle Scholar
  19. 19.
    Bonow RO. Prognostic implications of exercise radionuclide angiography in patients with coronary artery disease. Mayo Clin Proc 1988; 63: 630–634.PubMedGoogle Scholar
  20. 20.
    Licata G, Scaglione R, Parrinello G, Corrao S. Rapid left ventricular filling in untreated hypertensive subjects with or without left ventricular hypertrophy. Chest 1992; 102: 1507–1511.PubMedGoogle Scholar
  21. 21.
    Scaglione R, Dichiara MA, Indovina A, et al. Left ventricular diastolic and systolic function in normoten-sive obese subjects: influence of degree and duration of obesity. Eur Heart J 1992; 13: 738–742.PubMedGoogle Scholar
  22. 22.
    Licata G, Corrao S, Parrinello G, Scaglione R. Obesity and cardiovascular diseases. Ann Ital Med Int 1994; 9:29–33.Google Scholar
  23. 23.
    Mogensen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med 1984; 310: 356–360.PubMedGoogle Scholar
  24. 24.
    Mogensen CE, Christensen CK. Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med 1984; 311:89–93.PubMedGoogle Scholar
  25. 25.
    Yudkin JS, Forrest RD, Jackson CA. Microalbuminuria as predictor of vascular disease in non-diabetic subjects. Lancet 1988; 2: 530–533.PubMedGoogle Scholar
  26. 26.
    Haffner SM, Stern MP, Gruber MKK, et al. Microalbuminuria: potential marker for increased cardiovascular risk factor in non-diabetic subjects? Arteriosclerosis 1990; 5: 727–731.Google Scholar
  27. 27.
    Fauvel JP, Hadj-Aissa A, Laville M, Fadat G, Labeeuw M, Zech P, Pozet N. Microalbuminuria in nor-motensive with genetic risk of hypertension. Nephron 1991; 57: 375–376.PubMedGoogle Scholar
  28. 28.
    Bigazzi R, Bianchi S, Campese VM, Baldari G. Prevalence of microalbuminuria in a large population of patients with mild to moderate essential hypertension. Nephron 1992; 61: 94–97.PubMedGoogle Scholar
  29. 29.
    Groop L, Ekstrand A, Forsblom C, et al. Insulin resistance, hypertension and microalbuminuria in patients with Type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1993; 36: 642–647.PubMedGoogle Scholar
  30. 30.
    Yoshida Y, Fogo A, Ichikawa I. Glomerular haemodynamics changes vs hypertrophy in experimental glomerular sclerosis. Kidney Int 1989; 25: 654–660.Google Scholar
  31. 31.
    Bigazzi R, Bianchi S, Baldari D, et al. Microalbuminuria in salt-sensitive patients: A marker for renal and cardiovascular risk factors. Hypertension 1994; 23: 195–199.PubMedGoogle Scholar
  32. 32.
    Pedrinelli R, Giampietro O, Carmassi F, et al. Microalbuminuria and endothelial dysfunction in essential hypertension. Lancet 1994; 344: 14–18.PubMedGoogle Scholar
  33. 33.
    Scaglione R, Ganguzza A, Corrao S, et al. Central obesity and hypertension: pathophysiologic role of renal haemodynamics and function. Int J Obesity 1995; 19: 403–409.Google Scholar
  34. 34.
    Gibbons GH, Dzau, VJ. Mechanisms of disease: emerging concept of vascular remodeling. N Eng J Med 1994; 330, 1431.Google Scholar
  35. 35.
    Bennett, MR, Evan GT, Schwartz SM. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 1995; 95, 2266.PubMedGoogle Scholar
  36. 36.
    Brooks PC, Clark RAF, Cheresh DA, et al. Requirement of vascular integrin avb3 for angiogenesis. (1994); Science 264, 569.PubMedGoogle Scholar
  37. 37.
    Isner, J. M., Kerney, M., Bortman, S., Passeri, J. Apoptosis in human atherosclerosis and restenosis. (1995); Circulation 91, 2703.PubMedGoogle Scholar
  38. 38.
    Pignoli P, Tremoli E, Poli A, Oreste P, Paoletti R. Intima plus media thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation 1986; 74: 1399–1406.PubMedGoogle Scholar
  39. 39.
    Delcker A, Diener HC. Quantification of atherosclerosis plaques in carotid arteries by three dimensional ultrasound. Br J Radiol 1994; 67: 672–678.PubMedGoogle Scholar
  40. 40.
    Suurküla M, Agewall S, Fagerberg B, et al. Ultrasound evaluation of atherosclerosis manifestations in the carotid artery in high-risk hypertensive patients. Arterioscler Thromb 1994; 14: 1297–1304.PubMedGoogle Scholar
  41. 41.
    Pinto A, Scaglione R, Galati D, et al. Evaluation of regional haemodynamics and alterations of vascular wall of the lower limbs in hypertensive subjects. Eur Heart J 1995; 1692-1697.Google Scholar
  42. 42.
    Di Silvestre G, Cecala M, Amato P, et al. Ultrasonographic assessment of common carotid artery wall in hypertensives with familial hypercholesterolaemia. (Abs). Am J Hypertens 1996; 9: 62A.Google Scholar
  43. 43.
    Craven TE, Ryu JE, Espeland MA, et al. Evaluation of the associations between carotid artery atherosclerosis and coronary artery stenosis: a case-control study. Circulation 1990; 82: 1230–1242.PubMedGoogle Scholar
  44. 44.
    Howard G, Ryu JE, Evans GW, et al. Extracranial carotid atherosclerosis in patients with and without transient ischaemic attacks and coronary artery disease. Arteriosclerosis 1990; 10: 714–719.PubMedGoogle Scholar
  45. 45.
    Emeri RV, Cohn LH, Witimore AD. Coexistent carotid and coronary artery disease. Arch Surg 1983; 118: 1035–1039.Google Scholar
  46. 46.
    Mathur KS, Kashyap SK, Kumar U. Correlation of the extent and severity of atherosclerosis in the coronary and cerebral arteries. Circulation 1963; 27: 929–934.PubMedGoogle Scholar
  47. 47.
    Gai V, Forneris M, Colussi A. Pluridistrettualità arteriosclerotica in un gruppo di coronaropatici. In: Angiologia 86. Monduzzi Ed., Bologna 1986; 159-163.Google Scholar
  48. 48.
    Avellone G, Di Garbo V, Cordova R, et al. Sindrome trombofilica in pazienti affetti da pregresso infarto del miocardio con o senza lesioni aterosclerotiche carotidee. Cardiologia 1995; 40(11): 845–850.PubMedGoogle Scholar
  49. 49.
    Lüscher TF. Imbalance of endothelium-derived relaxing and contracting factors: a new concept in hypertension? Am J Hypertens 1990; 3: 317.PubMedGoogle Scholar
  50. 50.
    Taddei S, Virdis A, Mattei P, Salvetti A. Vasodilation to acetylcholine in primary and secondary forms of human hypertension. Hypertension 1993; 21: 929–933.PubMedGoogle Scholar
  51. 51.
    Treasure CB, Klein JL, Vita JA, et al. Hypertension and left ventricular hypertrophy are associated with impaired endothelium-mediated relaxation in human coronary resistance vessels. Circulation 1993; 87: 86–93.PubMedGoogle Scholar
  52. 52.
    Taddei S, Virdis A, Mattei P, et al. Response to acetylcholine in offspring of essential hypertensive patients. Hypertension 1996, in press.Google Scholar
  53. 53.
    Levin ER, Endothelius. N Engl J Med 1995; 333(6): 356–363.PubMedGoogle Scholar
  54. 54.
    Lüscher TF, Seo B-G, Bühler FR. Potential role of endothelin in hypertension. Hypertension 1993; 21: 752–757.PubMedGoogle Scholar
  55. 55.
    Brunner F, Du Toit EF, Opie LH. Endothelin release during ischaemia and reperfusion of isolated perfused rat hearts. J Mol Cell Cardiol 1992; 24: 1291–1305.PubMedGoogle Scholar
  56. 56.
    Omland T, Lie RT, Aakvaag A, et al. Plasma endothelin determination as a prognostic indicator of 1-year mortality after acute myocardial infarction. Circulation 1994; 89: 1573–1579.PubMedGoogle Scholar
  57. 57.
    Douglas SA, Louden C, Vickery-Clark LM, et al. A role for endogenous endothelin-1 in neointimal formation after rat carotid artery balloon angioplasty: protective effects of the novel non-peptide endothelin receptor antagonist SB 209670. Circ Res 1994; 75: 190–197.PubMedGoogle Scholar
  58. 58.
    Parrinello G, Scaglione R, Pinto A, et al. Central obesity and hypertension: role of plasma endothelin. Am J Hypertens 1996;9:1186–1191.PubMedGoogle Scholar
  59. 59.
    HaaK T, Jungmann E, Felber A, et al. Increased plasma levels of endothelin in diabetic patients with hypertension. Am J Hypertens 1992; 5: 161–166.PubMedGoogle Scholar
  60. 60.
    Kurihara Y, Kurihara H, Suzuki H, et al. Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1. Nature 1994; 368: 703–710.PubMedGoogle Scholar
  61. 61.
    Davenport AP, Ashby MJ, Easton P, et al. A sensitive immunoassay measuring endothelin-like immunore-activity in human plasma: comparison of levels in patients with essential hypertension and normotensive control subjects. Clin Sci 1990; 78: 261–264.PubMedGoogle Scholar
  62. 62.
    Haynes WG, Hand MF, Johnstone HA, et al. Direct and sympathetically mediated venoconstriction in essential hypertension. Enhanced response to endothelin-1. J Clin Invest 1994; 94: 1359–1364.PubMedGoogle Scholar
  63. 63.
    Lerman A, Hildebrand FL, Aarthus LL, Burnett JC. Endothelin has biological actions at pathophysiological concentrations. Circulation 1991; 83: 1808–1814.PubMedGoogle Scholar
  64. 64.
    Vanhoutte PM. Is endothelin involved in the pathogenesis of hypertension? Hypertension 1993; 21: 747–751.PubMedGoogle Scholar
  65. 65.
    Omboni S, Frattola A, Parati G, Mancia G. Clinical value of blood pressure measurements: Focus on ambulatory blood pressures. Am J Cardiol 1992; 70: 4D–8D.PubMedGoogle Scholar
  66. 66.
    Licata G. Epidemiologia dell’ipertensione arteriosa e danno d’organo. Ann Ital Med Int 1994; 9(Suppl): 44–49.Google Scholar
  67. 67.
    Licata G, Scaglione R, Ganguzza A, et al. Central obesity and hypertension. Relationship between fasting serum insulin, plasma renin activity and diastolic blood pressure in young obese subjects. Am J Hypertens 1994; 7:314–320.PubMedGoogle Scholar
  68. 68.
    Licata G, Corrao S, Ganguzza A, et al. Microalbuminuria in obese subjects: relationship between body fat distribution, blood pressure and left ventricular structure and function. Submitted to Am J Cardiol.Google Scholar
  69. 69.
    O’Brien E, Sheridan J, O’Malley K. Dippers and non-dippers. Lancet 1988; ii: 397.Google Scholar
  70. 70.
    Staessen JA, Fagard RH, Lijnen PJ, et al. Mean and range of the ambulatory pressure in normotensive subjects from a meta-analysis of 23 studies. Am J Cardiol 1991; 67: 723–727.PubMedGoogle Scholar
  71. 71.
    Verdecchia P, Porcellati C, Schillaci G et al. Ambulatory blood pressure. An independent predictor of prognosis in essential hypertension. Hypertension 1994; 24: 793–801.PubMedGoogle Scholar
  72. 72.
    Grosse P, Ansoborlo P, Lemetayer P, Clementy J. Daytime and nighttime ambulatory blood pressures should be calculated over the true sleep/waking cycle and not over arbitrary periods. Am J Hypertens 1996; 9: 269–272.Google Scholar
  73. 73.
    Gatzka CD, Schmieder RE. Improved classification of dippers by individualized analysis of ambulatory blood pressure profiles. Am J Hypertens 1995; 8: 666–671.PubMedGoogle Scholar
  74. 74.
    Corrao S, Scaglione R, Arnone S, et al. Analysis of 24-h non-invasive ambulatory blood pressure profiles by a third degree polynomial approach. J Cardiovasc Diagn Proc 1996; 13(4):237–242.Google Scholar
  75. 75.
    Brunner HR, Laragh JH, Baer L. Essential hypertension: renin and aldosterone heart attack and stroke. N Engl J Med 1972: 286: 441–449.PubMedGoogle Scholar
  76. 76.
    Brunner HR, Sealey JE, Laragh JH. Renin as a risk factor in essential hypertension: more evidence. Am J Med 1973; 55:295–302.PubMedGoogle Scholar
  77. 77.
    Gavras H, Kremer D, Brown JJ, et al. Angiotensin and norepinephrine induced myocardial lesions: experimental and clinical studies in rabbits and man. Am Heart J 1975; 89: 321–332.PubMedGoogle Scholar
  78. 78.
    Camargo MJ, Campbell WG, Volpe M, et al. Abnormal renin secretory response to high sodium diet in stroke prone spontaneously hypertensive rats. Kidney Int 1990; 37: 383A.Google Scholar
  79. 79.
    Volpe M, Rubattu S, Mirante A, et al. Early impairment of sodium handling in stroke-prone spontaneously hypertensive rats. Am J Hypertens 1992; 5: 48A.Google Scholar
  80. 80.
    Kurtz TW, Morris RC, Pershadsingh HA. The Zucker fatty rat as a genetic model of obesity and hypertension. Hypertension 1989; 13: 896–901.PubMedGoogle Scholar
  81. 81.
    Licata G, Volpe M, Scaglione R, Rubattu S. Salt regulating hormones in young normotensive obese subjects. Effects of saline load. Hypertension 1994; 23 (suppl 1): 20–24.Google Scholar
  82. 82.
    Volpe M, Lembo G, De Luca N, et al. Abnormal hormonal and renal responses to saline load in hypertensive patients with parental history of cardiovascular accidents. Circulation 1991; 84: 92–100.PubMedGoogle Scholar
  83. 83.
    Stier CT, Benter IF, Ahmad S. Enalapril prevents stroke and kidney dysfunction in salt-loaded stroke-prone spontaneously hypertensive rats. Hypertension 1989; 13: 115–121.PubMedGoogle Scholar
  84. 84.
    Alderman MH, Madhavan S, Ooi WL, et al. Association of the renin-sodium profile with the risk of myocardial infarction in patients with hypertension. N Engl J Med 1991; 324, 16: 1098–1104.PubMedGoogle Scholar
  85. 85.
    Rigat B, Hubert C, Corvol P, Soubrier F. PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme (DCPI). Nucleic Acids Res 1992; 20: 1433.PubMedGoogle Scholar
  86. 86.
    Cambien F, Poirier O, Lecerf L, et al. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 1992; 359: 641–644.PubMedGoogle Scholar
  87. 87.
    Tiret L, Poirier O, Lecerf L, et al. Deletion polymorphism in angiotensin-converting enzyme gene associated with parental history of myocardial infarction. Lancet 1993; 341: 991–992.PubMedGoogle Scholar
  88. 88.
    Schunkert H, Hense HW, Holmer SR, et al. Association between a deletion polymorphism of the angiotensin-converting enzyme gene and left ventricular hypertrophy. N Engl J Med 1994; 330: 1634–1638.PubMedGoogle Scholar
  89. 89.
    Lindpaintner K, Pfeffer MA, Kreutz R, et al. A prospective evaluation of an angiotensin-converting enzyme gene polymorphism and the risk of ischaemic heart disease. N Engl J Med 1995; 332: 706–711.PubMedGoogle Scholar
  90. 90.
    Eschwege E, Richard JL, Thibault N, et al. Coronary heart disease plasma insulin levels: the Paris prospective study, ten years later. Horm Metab Res 1985; 15 (Suppl): 41–46.Google Scholar
  91. 91.
    Pyorala K. Relationship of glucose tolerance and plasma insulin to the incidence of coronary heart disease: results from two population studies in Finland. Diabetes Care 1989; 2: 131–141.Google Scholar
  92. 92.
    Ducimetiere P, Eschwege R, Papoz L, et al. Relationship of plasma insulin levels to the incidence of myocardial infarction and coronary heart disease mortality in a middle-aged population. Diabetologia 1980; 19: 205–210.PubMedGoogle Scholar
  93. 93.
    Zavaroni I, Bonora E, Pagliara M, et al. Risk factors for coronary artery disease in healthy persons with hy-perinsulinemia and normal glucose tolerance. N Engl J Med 1989; 320: 702–706.PubMedGoogle Scholar
  94. 94.
    Bigazzi R, Bianchi S, Baldari G, Campese VM. Clustering of cardiovascular risk factors in salt-sensitive patients with essential hypertension: role of insulin. Am J Hypertens 1996; 9: 24–32.PubMedGoogle Scholar
  95. 95.
    Cigolini M, Scidell JC, Targher G, et al. Fasting serum insulin in relation to components of the metabolic syndrome in european healthy men: the european fat distribution study. Metabolism 1995; 44: 35–40.PubMedGoogle Scholar
  96. 96.
    Stout RW. The impact of insulin upon atherosclerosis. Horm Metab Res 1994; 26: 125–128.PubMedGoogle Scholar
  97. 97.
    King GL, Goodman DA, Buzney S, et al. Receptors and growth-promoting effects of insulin and insulin like growth factors in cells from bovine retinal capillaries and aorta. J Clin Invest 1985; 75: 1028–1036.PubMedGoogle Scholar
  98. 98.
    Anderson EA, Balon TW, Hoffman RP, et al. Insulin increases sympathetic activity but not blood pressure in borderline hypertensive humans. Hypertension 1992; 19: 621–627.PubMedGoogle Scholar
  99. 99.
    Jeng JR, Sheu WHH, Jeng CY, et al. Impaired flbrinolysis and insulin resistance in patients with hypertension. Am. J. Hypertens 1996; 9: 484–490.PubMedGoogle Scholar
  100. 100.
    Connel JMC, Mc Lellan AR. Hypertension, insulin and atherogenesis. J Cardiovasc Pharmacol 1991; 18 (Suppl 2): 45–50.Google Scholar
  101. 101.
    Rocchini AP, Katch V, Kveselis D, et al. Insulin and renal sodium retention in obese adolescents. Hypertension 1989; 14: 367–374.PubMedGoogle Scholar
  102. 102.
    Landsberg L, Young JB. Insulin mediated glucose metabolism in the relationship between dietary intake and sympathetic nervous systemic activity. Int J Obesity 1985; 9 (Suppl 2): 63–68.Google Scholar
  103. 103.
    Rocchini AP, Moorehead C, De Runer S, et al. Hyperinsulinemia and the aldosterone and pressor response to angiotensin II. Hypertension 1990; 15: 861–866.PubMedGoogle Scholar
  104. 104.
    Trevisan R, Fioretto P, Semplicini A. Role of insulin and atrial natriuretic peptide in sodium ritention in insulin-treated IDDM patients during isotonic volume expansion. Diabetes 1990; 39: 289–298.PubMedGoogle Scholar
  105. 105.
    Berg K. New serum type system in man: the Lp system. Acta Pathol Scand 1963; 69: 369–382.Google Scholar
  106. 106.
    Rosengren A, Wilhelmsem L, Eriksson E, Risberg B, Wedel H. Lipoprotein(a) and coronary heart disease: a prospective case-control study in a general population sample of middle aged men. BMJ 1990; 301: 1248–1251.PubMedGoogle Scholar
  107. 107.
    Schaefer EJ, Lamon-Fava S, Jenner JL. Lipoprotein levels and risk of coronary heart disease in men: the lipid research clinics coronary primary prevention trial. JAMA 1994; 271: 999–1003PubMedGoogle Scholar
  108. 108.
    Genest J, Jenner JL, McNamara JR et al. Prevalence of lipoprotein (a) [Lp(a)] excess in coronary artery disease. Am J Cardiol 1991; 67: 1039–1045.PubMedGoogle Scholar
  109. 109.
    Bailleul S, Conderc R, Rossignol C, et al. Lipoprotein (a) in childhood: relation with other atherosclerosis risk factor and family history of atherosclerosis. Clin Chem 1995; 41(2): 241–245.PubMedGoogle Scholar
  110. 110.
    Watts GF, Mazurkiewicz JC, Tonge K, et al. Lipoprotein (a) as a determinant of the severity of angiographically defined carotid atherosclerosis. Q J Med 1995; 88: 321–326.Google Scholar
  111. 111.
    Brown G, Albers JJ, Fisher SM, Schaefer SM, Lin JT, Kaplan C, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 1990; 323: 1289–1298.PubMedGoogle Scholar
  112. 112.
    Seed M, Hoppichler F, Reaveley D, et al. Relation of serum lipoprotein (a) phenotype to coronary heart disease in patients with familiar hypercholesterolemia. N Engl J Med 1990; 322: 1494–1499.PubMedGoogle Scholar
  113. 113.
    Gaubatz JW, Ghanem KI, Guevara J, et al. Polymorphic forms of human apolipoprotein (a): inheritance and relationship of their molecular weights to plasma levels of lipoprotein (a). J Lipid Res 1990; 31: 603–613.PubMedGoogle Scholar
  114. 114.
    Parlavecchia M, Pancaldi A, Taramelli R, et al. Evidence that Apolipoprotein (a) phenotype is a risk factor for coronary artery disease in men <55 years of age. Am J Cardiol 1994; 74: 346–351.PubMedGoogle Scholar
  115. 115.
    Scaglione R, Corrao S, Ganguzza A, et al. Lipoprotein (a) in obese subjects with central fat distribution: relationship with ambulatory blood pressure monitoring and left ventricular structure and function. Submitted to NMCD.Google Scholar
  116. 116.
    Mudd SH, Skovby F, Levy HL. The natural history of homocystinuria due to cystathionine ß-synthase deficiency. Am J Hum Genet 1985; 37: 1–31.PubMedGoogle Scholar
  117. 117.
    Mayer EL, Jacobsen DW, Robinson K. Homocysteine and coronary atherosclerosis. JACC 1996; 27(3): 517–527.PubMedGoogle Scholar
  118. 118.
    Wilcken DEL, Wilcken B. The pathogenesis of coronary artery disease. A possible role for methionine metabolism. J Clin Invest 1976; 57: 1079–1082.PubMedGoogle Scholar
  119. 119.
    Dudman NPB, Hicks C, Lynch JF, et al. Homocysteine thiolactone disposal by human arterial endothelial cells and serum in vitro. Arterioscler Thromb 1991; 11: 663–670.PubMedGoogle Scholar
  120. 120.
    Di Minno G, Davi G, Margaglione M, et al. Abnormally high thromboxane biosynthesis in homozygous homocystinuria. Evidence for platelet involvement and probucol-sensitive mechanism. J Clin Invest 1993; 92: 1400–1406.PubMedGoogle Scholar
  121. 121.
    Hilden M, Brandt NJ, Nilsson IM, et al. Investigation of coagulation and fibrinolysis in homocystinuria. Acta Med Scand 1974; 195: 533–535.PubMedGoogle Scholar
  122. 122.
    Ubink JB, Vermaak WJH, Becker PJ, et al. The prevalence of homocysteinemia and hypercholesterolemia in angiographically defined coronary heart disease. Klin Wochenschr 1991; 69: 527–534.Google Scholar
  123. 123.
    Glueck CJ, Shaw P, Lang J, et al. Evidence that homocysteine is an independent risk factor for atherosclerosis in hyperlipidemic patients. Am J Cardiol 1995; 75: 132–136.PubMedGoogle Scholar
  124. 124.
    Valleisen L, Bailey J, Epping Ph, et al. Epidemiological study on factor VII, factor VIII and fibrinogen in an industrial population. I. Baseline data on the relation to age, gender, body weight, smoking, alchool, pill-using and menopause. Thromb Haemost 1985; 54: 475–479.Google Scholar
  125. 125.
    ECAT Angina Pectoris Study Group. Baseline associations of haemostatic factors with extent of coronary arteriosclerosis and other coronary risk factors in 3000 patients with angina pectoris undergoing coronary angiography. Eur Heart J 1993; 14: 8–17.Google Scholar
  126. 126.
    Masuda T, Yasue H, Ogawa H, et al. Plasma Plasminogen activator inhibitor activity and tissue plasmino-gen activator levels in patients with unstable angina and those with coronary spastic angina. Am Heart J 1992; 124: 314–319.PubMedGoogle Scholar
  127. 127.
    Licata G, Scaglione R, Avellone G, et al. Haemostatic function in young obese subjects with central obesity: relationship with left ventricular function. Metabolism 1995; 44, 11: 1417–1421.PubMedGoogle Scholar
  128. 128.
    Licata G, Corrao S, Parrinello G, et al. Obesità e malattie cardiovascolari. Relazione al 93° Congresso Nazionale della società Italiana di Medicina Interna, Firenze 17–21 Ottobre 1992.Google Scholar
  129. 129.
    Hollister AS, Inagami T. Atrial natriuretic factor and hypertension. A review and metaanalysis. Am J Hy-pertens 1991; 4:850–865.Google Scholar
  130. 130.
    Volpe M, Tritto C, De Luca N, et al. Failure of atrial natriuretic factor to increase with saline load in patients with dilated cardiomyopathy and mild heart failure. J Clin Invest 1991; 88: 1481–1489.PubMedGoogle Scholar
  131. 131.
    Fricker J. Brain natriuretic peptide indicates post-MI outlook. Editorial the Lancet 1996; 347: 1753.Google Scholar
  132. 132.
    Yasue H, Morita E, Yoshimura M, et al. Increased plasma levels of brain natriuretic peptide in acute myocardial infarction [abstract]. Circulation 1991; 84 (Suppl II): 29.Google Scholar
  133. 133.
    Liuzzo G, Biasucci L, Gallimore R, et al. The prognostic value of C-reactive protein and serum amyloid A protein in severe unstable angina. N Engl J Med 1994;331:417–424.PubMedGoogle Scholar
  134. 134.
    Neri Serneri GG, Abbate R, Gori AM, et al. Transient intermittent lymphocyte activation is responsible for the instability of angina. Circulation 1992;86:790–797.Google Scholar
  135. 135.
    Muscari A, Bozzoli C, Puddu GM, et al. Association of serum C3 levels with the risk of myocardial infarction. Am J Med 1995;98:357–364.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Giuseppe Licata
    • 1
  1. 1.Cattedra di Medicina Interna, Istituto di Clinica MedicaUniversità di PalermoItaly

Personalised recommendations