Skip to main content

Historical Perspectives on Microwave and Millimeter-Wave Integrated Circuits

  • Chapter
Book cover Directions for the Next Generation of MMIC Devices and Systems
  • 251 Accesses

Abstract

The principal highlights in the early history of electromagnetic guided waves are reviewed first, in order to show when and why hollow pipes were proposed and built as guiding structures for microwaves. The paper then develops the transition from that elemental form to modern-day microwave and millimeter-wave integrated circuits, including the competition between strip line and microstrip line, by combining the underlying physical principles with historical developments and anecdotes. The paper concludes by proposing that the development of microwave integrated circuits be viewed in terms of three stages, corresponding simultaneously to time periods and to the types of solutions required to characterize the circuit performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. P. Feynman, R. B. Leighton, and M. L. Sands, The Feynman Lectures on Physics, Vol. II, p. 1–11, Addison-Wesley, Reading, MA (1964).

    Google Scholar 

  2. J. H. Bryant, Heinrich Hertz, The Beginning of Microwaves, Institute of Electrical and Electronics Engineers, New York (1988).

    Google Scholar 

  3. Lord Rayleigh, On the passage of electric waves through tubes, or the vibration of dielectric cylinders, Phil. Mag. 43:125 (1897).

    MATH  Google Scholar 

  4. Lord Rayleigh, On the incidence of aerial and electric waves on small obstacles in the form of elliptic cylinders; on the passage of electric waves through a circular aperture in a conducting screen, Phil. Mag. 44:28 (1897).

    MATH  Google Scholar 

  5. K. S. Packard, The origin of waveguides: a case of multiple rediscovery, IEEE Trans. Microwave Theory Tech., Special Centennial Issue 32:961 (1984).

    Article  MathSciNet  Google Scholar 

  6. J. H. Bryant, Coaxial transmission lines, related two-conductor transmission lines, connectors, and components: a U.S. historical perspective, IEEE Trans. Microwave Theory Tech., Special Centennial Issue 32:970 (1984).

    Article  Google Scholar 

  7. A. A. Oliner, Historical perspectives on microwave field theory, IEEE Trans. Microwave Theory Tech., Special Centennial Issue 32:1022 (1984).

    Article  Google Scholar 

  8. H. Sobol, Microwave communications — an historical perspective, IEEE Trans. Microwave Theory Tech., Special Centennial Issue 32:1170 (1984).

    Article  Google Scholar 

  9. J. F. Ramsay, Microwave antenna and waveguide techniques before 1900, Proc. IRE 46:405 (1958).

    Article  Google Scholar 

  10. G. C. Southworth, Forty Years of Radio Research, Gordon and Breach, New York (1962).

    Google Scholar 

  11. G. C. Southworth, Hyper-frequency wave guides — general considerations and experimental results, Bell Syst. Tech. J. 15:284 (1936).

    Article  Google Scholar 

  12. J. R. Carson, S. P. Mead, and S. A. Schelkunoff, Hyper-frequency wave guides -mathematical theory, Bell Syst. Tech. J. 15:310 (1936).

    Article  Google Scholar 

  13. W. L. Barrow, Transmission of electromagnetic waves in hollow tubes of metal, Proc. IRE 24:1298 (1936).

    Article  Google Scholar 

  14. N. Marcuvitz, Waveguide Handbook, MIT Radiation Laboratory Series vol. 10, McGraw-Hill, New York (1951).

    Google Scholar 

  15. D. S. Saxon, Notes on lectures by Julian Schwinger: Discontinuities on waveguides, (1945).

    Google Scholar 

  16. R. M. Barrett and M. H. Barnes, Microwave printed circuits, IRE National Conf. on Airborne Electronics, Dayton, OH (1951).

    Google Scholar 

  17. R. M. Barrett, Etched sheets serve as microwave components, Electronics 25:114 (1952).

    Google Scholar 

  18. D. D. Grieg and H. F. Engelman, Microstrip — a new transmission technique for the kilomegacycle range, Proc. IRE 40:1644 (1952).

    Article  Google Scholar 

  19. F. Assadourian and E. Rimai, Simplified theory of microstrip transmission systems, Proc. IRE 40:1651 (1952).

    Article  Google Scholar 

  20. J. A. Kostriza, Microstrip components, Proc. IRE 40:1658 (1952).

    Article  Google Scholar 

  21. Proceedings of Symposium on Microwave Strip Circuits, Tufts College, 1954, Special issue of IRE Trans. Microwave Theory Tech. vol. 3 (1955).

    Google Scholar 

  22. M. Arditi, Characteristics and applications of microstrip for microwave wiring, IRE Trans. Microwave Theory Tech., Special issue: Symposium on Microwave Strip Circuits 3:31 (1955).

    Article  Google Scholar 

  23. D. N. McQuiddy Jr., J. W. Wassel, J. B. LaGrange, and W. R. Wisseman, Monolithic microwave integrated circuits: an historical perspective, IEEE Trans. Microwave Theory Tech., Special Centennial Issue 32:997 (1984).

    Article  Google Scholar 

  24. H. Howe Jr., Microwave integrated circuits — an historical perspective, IEEE Trans. Microwave Theory Tech., Special Centennial Issue 32:991 (1984).

    Article  Google Scholar 

  25. H. Howe Jr., Stripline Circuit Design, Artech House, Dedham, MA (1974).

    Google Scholar 

  26. S. B. Cohn, Slot line on a dielectric substrate, IEEE Trans. Microwave Theory Tech. 17:768 (1969).

    Article  Google Scholar 

  27. C. P. Wen, Coplanar waveguide: a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications, IEEE Trans. Microwave Theory Tech. 17:1087 (1969).

    Article  Google Scholar 

  28. H. Shigesawa, M. Tsuji, and A. A. Oliner, Conductor-backed slot line and coplanar waveguide: dangers and full-wave analyses, IEEE MTT-S Int. Microwave Sympos. Digest p. 199 (1988).

    Google Scholar 

  29. N. Das, Characteristics of modified slotline configurations, IEEE Int. Microwave Sympos. Digest p. 777 (1991). Also, N. Das, Methods of suppression or avoidance of parallel-plate power leakage from conductor-backed transmisssion lines, IEEE Trans. Microwave Theory Tech. 44:169 (1996).

    Article  Google Scholar 

  30. Y. Liu and T. Itoh, Leakage phenomena in multilayered conductor-backed coplanar waveguide, IEEE Microwave and Guided Wave Lett. 39:426 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oliner, A.A. (1997). Historical Perspectives on Microwave and Millimeter-Wave Integrated Circuits. In: Das, N.K., Bertoni, H.L. (eds) Directions for the Next Generation of MMIC Devices and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1480-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1480-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1482-8

  • Online ISBN: 978-1-4899-1480-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics